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Introduction:

In this chapter we shall study transient response of the RL, RC series and RLC
circuits with external DC excitations. Transients are generated in Electrical circuits
due to abrupt changes in the operating conditions when energy storage elements
like Inductors or capacitors are present. Transient response is the dynamic response
during the initial phase before the steady state response is achieved when such
abrupt changes are applied. To obtain the transient response of such circuits we
have to solve the differential equations which are the governing equations
representing the electrical behavior of the circuit. A circuit having a single energy
storage element i.e. either a capacitor or an Inductor is called a Single order circuit
and it's governing equation is called a First order Differential Equation. A circuit
having both Inductor and a Capacitor is called a Second order Circuit and its
governing equation is called a Second order Differential Equation. The variables in
these Differential Equations are currents and voltages in the circuit as a function of
time.

A solution is said to be obtained to these equations when we have found an
expression for the dependent variable that satisfies both the differential equation
and the prescribed initial conditions. The solution of the differential equation
represents the Response of the circuit. Now we will find out the response of the
basic RL and RC circuits with DC Excitation.

RL CIRCUIT with external DC excitation:

Let us take a simple RL networksubjected to external DC excitation as shown in the
figure. The circuit consists of a battery whose voltage is V in serieswith a switch, a
resistor R, and an inductor L. The switch is closed att = 0.

Fig: RL Circuit with external DC excitation

When the switch is closed current tries to change in the inductor and hence a
voltage VL(t) is induced across the terminals of the Inductor in opposition to the
applied voltage. The rate of change of current decreases with time which allows
current to build up to it’'s maximum value.




and, hence,
Rearranging we get

It is evident that the currenti(t) is zero before t = 0.and we have to find out current
i(t)for time t >0. We will find i(t)for time t >0 by writing the appropriate circuit
equationand then solving it by separation of the variables and integration.

Applying Kirchhoff’'s voltage law to the above circuit we get :

V = vR(t)+ vL(t)
i (t) = 0 fort <Oand
Using the standard relationships of Voltage and Current for the Resistors and
Inductors we can rewrite the above equations as
V = Ri + Ldi/dt fort >0

One direct method of solving such a differential equation consists of writing the
equation in such a way that the variables are separated, and then integrating each
side of the equation. The variables in the above equation are iand t. Thisequation is
multiplied by dtandarranged with the variables separated as shown below:




Ri. dt + Ldi = V. dt

i.e Ldi=
i.e(V - Ri)dt = dt
Ldi / (V -
Ri)
Next each side is integrated directly to get :

-(L/R) In(V—- Ri) =t + k

Where k is the integration constant. In order to evaluate k, an
initial condition must be invoked. Prior to t = 0, i (t)is zero, and
thus i (0—) = 0. Since the current in an inductorcannot change by
a finite amount in zero time without being associated withan
infinite voltage, we have i (0+) = 0. Setting i = 0 att = 0,in the
above equation we obtain

- (L/R) In(V) =k

— L/R[In(V=-Ri) - InV]=t

- (R/L)t

In[ (V- Ri) /V]
Taking antilogarithm on both sides we get

_ (V-Ri)/v= e RYL
From which we can see that

i(t) = (V/R)-(V/R)e "' fort >0
Thus, an expression for the response valid for all time twould be

Rt/

i(t) = VR [1- e RYL,
This is normally written as:
i(t) = VR [1- e %/T

where ‘T’ is called thetime constantof the circuitand it's unit is
seconds.




The voltage across the resistance and the Inductorfor t >0can be written as :

VR(t) =i(t).R =V [1-e /T

-t./T

1

1=V (e—t./'r

VvL(t) =V -VvR(t) =V -V [1l-e )

A plot of the currenti(t) and the voltages vR(t) & vL(t) is shown in the figure below.
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Fig: Transient current and voltages in the Series RL circuit.

At t = ‘T’ the voltage across the inductor will be

vi(t) =V (e~ T/") = v/e = 0.36788 v

and the voltage across the Resistor will be VR(T) = VI[1- e T/t

\"

1=0.63212

The plots of currenti(t) and the voltage across the Resistorvr(t) are called
exponential growth curves and the voltage across the inductorvL(t)is called
exponential decay curve.

RCCIRCUIT with external DC excitation:

A series RC circuit with external DC excitationV volts connected through a switch is
shown in the figure below. If the capacitor is not charged initially i.e. it's voltage is
zero ,then after the switch S is closed at time t=0, the capacitor voltage builds up
gradually and reaches it's steady state value of V volts after a finite time. The
charging current will be maximum initially (since initially capacitor voltage is zero
and voltage acrossa capacitor cannot change instantaneously) and then it will
gradually comedown as the capacitor voltagestarts building up. The current and the
voltage during such charging periods are called Transient Current and Transient
Voltage.
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Fig: RC Circuit with external DC excitation
Applying KVL around the loop in the above circuit we can write
V = vR(t) + vc(t)
Using the standard relationships of voltage and current for an Ideal Capacitor we get
ve(t) = (1/C ) i(Ddt or i(t) = C.[dvc(t)/dt]
and using this relation, vR(t) can be written asvR(t) = Ri(t) = R. C.[dvc(t)/dt]

Using the above two expressions for vkR(t) and vc(t)the above expression for V can
be rewritten as :

V = R. C.[dvc(t)/dt] + vc(t)

Or finallydvc(t)/dt + (1/RC). vc(t) = V/RC

The inverse coefficient of vc(t) is known as the time constant of the circuit Tand is
given by T = RC and it’s units are seconds.

The above equation is a first order differential equation and can be solved by using
the same method of separation of variablesas we adopted for the LC circuit.

Multiplying the above equationdvc(t)/dt + (1/RC). vc(t) = V/RC

both sides by ‘dt’ and rearranging the terms so as to separate the variables vc(t)
and t we get:

dvc(t)+ (1/RC). vc(t) . dt = (V/RC).dt
dvc(t)




[(V/RC)—(1/RC). vc(t)]. dt
dvc(t) / [(V/RC)—(1/RC). vc(t)] = dt

R.C.c(t dt
dvc(t)]

)/ =

[(V-v




Now integrating both sides w.r.t their variables i.e. ‘vc(t)’ on the LHS and‘t’ on the
RHS we get

—RCIn [V — vc(t)] = t+ k

where ‘k‘is the constant of integration.In order to evaluate k, an initial condition
must be invoked. Prior to t = 0, vc(t)is zero, and thus vc(t)(0-) = 0. Since the
voltage across a capacitor cannot change by a finite amount in zero time, we have
vc(t)(0+) = 0. Setting vc(t)= 0 att = 0, in the above equation we obtain:

—RCIn[V] =k
and substituting this value —=RC In [V] in the above simplified equation—=RC In
of k = [V — vc(t)] = t+ k
we get :
—RC In [V - vc(t)] = t—-RC
In [V]

i.,e. =RC In [V — vc(t)] +
RCIn[V] =t i.e. —=RC[In {V - vc(t)}-In (V)]I=1t

[In {V — vc(t)}] -
i.e. In[V]} = —t/RC

i.e. In [{V - vc(t)}/(V)] = —t/RC

Taking anti logarithm we get[{V — vc(t)}/(V)] = € -urc
vc(t) = V(1-e

. —t/RC

i.e )

which is the voltage across the capacitor as a function of time .

The voltage across the Resistor is given by :vR(t) = V—vc(t) =V-V(1-e
—t/RC —t/RC
) = V.e
And the current through the circuit is given by: i(t) = C.[dvc(t)/dt] = (CV/CR )e
—t/RC_ (VIR )e —t/RC
Or the othe other way: i(t) = vr(t) /R = ( V.e ~URC) R = (v/R )e "YRC
In terms of the time constant Tthe vc(t) , vrR(t)and i(t) are
expressions for given by :
ve(t) = v(1 - e “RC
VR(t
) = V.e -t/RC
i(t) =(V/R)e

—t/RC




The plots of currenti(t) and the voltages across the resistor vR(t)and capacitor
vc(t)are shown in the figure below.
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Fig : Transient current and voltages in RC circuit with DC excitation.

At t = ‘T’ the voltage across the capacitor will be:

-T/T

vc(T) = VIl-e ] =0.63212V
the voltage across the Resistor will be:
= V(e /M) =ve=0.36788V
and the current through the circuit will be:
i(T) = (V/R) (T /") = V/R. e = 0.36788 (V/R)

Thus it can be seen that after one time constant the chargin%current.has
decay%d t'(l)l gpprommately 36.8% of it's value at t=0 . At €= 5 Tcharging
current will be

-5T /7 5

i(5t) = (V/R) (e ) =V/R. e = 0.0067(V/R)

This value is very small compared to the maximum value of (V/R) at t=0 .Thus it
can be assumed that the capacitor is fully charged after 5 time constants.

The following similarities may be noted between the equations for the
transients in"the LC and RC Circuits:

* The transient voltage across the Inductor in a LC circuit and_Ii_hﬁ_
)

transient current in the RC circuit have the same form k.(e
The transient current in a LC circuit and the transient volttalm_ge across the
)

capacitor in the RC circuit have the same form k.(1-e

But the main difference between the RC and RL circuits is the effect of resistance
on the duration of the transients.

* In a RL circuit a large resistance shortens the transient since the
time constant T =L/R becomessmall.

Where as in a RC circuit a large resistance prolongs the transient since the
time constant T = RC becomés large.

¥




Discharge transients: Consider the circuit shown in the figure below where
the switch allows both charging and discharging the capacitor. When the
switch is position 1 the capacitor gets charged to the applied voltage V.
When the switch is brought to position 2, the current discharges from the
positive terminal of the capacitor to the negative terminal through the
resistor R as shown in the figure (b). The circuit in position 2 is also called
source free circuit since there is no any applied voltage.
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Fig: RC circuit (a) During Charging (b) During Discharging

The current i1 flow is in opposite direction as compared to the flow of the
original charging current i. This process is called the discharging of the
capacitor.The decaying voltage and the current are called the discharge
transients.The resistor ,during the discharge will oppose the flow of current
with the polarity of voltage as shown. Since there is no any external voltage
source ,the algebraic sum of the voltages across the Resistance and the
capacitor will be zero (applying KVL) .The resulting loop equation during the
discharge can be written as

VR(t)+ve(t) = 0  or vr(t) = - vc(t)

We know that vr(t) = R.i(t) = R. C.dvc(t) /dt. Substituting this in the first loop
equation we R.
get C.dvc(t)/dt + ve(t) =0

A S A kel whereKisa
ort circui

The value of K is found out by invoking the initial condition vC(t) =V @t =0

Then we get K=V and hence vC(t) = Ve-t/T ;7 VR(t) =
ve T and i(t) = vR()R = (V/R)e T

The plots of the voltages across the Resistor and the Capacitor are shown in
the figure below.
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Fig: Plot of Discharge transients in RC circuit

Decay transients: Consider the circuit shown in the figure below where the
switch allows both growing and decaying of current through the Inductance .
When the switch is position 1 the current through the Inductance builds up to
the steady state value of V/R. When the switch is brought to position 2, the
current decays gradually from V/R to zero. The circuit in position 2 is also
called a source free circuitsince there is no any applied voltage.
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Fig: Decay Transient In RL circuit

The current flow during decay is in the same direction as compared to the
flow of the original growing /build up current. The decaying voltage across
the Resistor and the current are called the decay transients.. Since there is
no any external voltage source ,the algebraic sum of the voltages across the
Resistance and the Inductor will be zero (applying KVL) .The resulting loop
equation during the discharge can be written as

VR(t)+VvL(t) = R.i(t) + L.di(t)/dt = 0and vR(t) = - vL(t)
. o t/T h
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The value of the constant K is found out by invoking the initial condition i(t)
=V/R@t=0




t/t t/t

Then we get K = V/R and hence i(t) = (V/R) . e ' ; vR(t) = R.i(t)= Ve

and v|(t) = - Ve.
—




The plots of the voltages across the Resistor and the Inductor and the
decaying current through the circuit are shown in the figure below.
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Fig: Plot of Decay transients in RL circuit

The Concept of Natural Response and forced response:

The RL and RC circuits we have studied are with external DC excitation. These
circuits without the external DC excitation are called source free circuits and their
Response obtained by solving the corresponding differential equations is known by
many names. Since this response depends on the general nature of the circuit
(type of elements, their size, their interconnection method etc.,) it is often called a
Natural response. However any real circuit we construct cannot store energy
forever. The resistances intrinsically associated with Inductances and Capacitors will
eventually dissipate the stored energy into heat. The response eventually dies
down,. Hence it is also called Transient response. As per the mathematician’s
nomenclature the solution of such a homogeneous linear differential equation is
called Complementary function.

When we consider independent sources acting on a circuit, part of the response will
resemble the nature of the particular source. (Or forcing function) This part of the
response is called particular solution. , the steady state response or forced
response. This will be complemented by the complementary function produced in
the source free circuit. The complete response of the circuit is given by the sum of
the complementary function and the particular solution. In other words:

TheComplete response = Natural response + Forced response

There is also an excellent mathematical reason for considering the complete
response to be composed of two parts—the forced response and the natural
response. The reason is based on the fact that the solution of any linear differential
equation may be expressed as the sum of two parts: the
complementarysolution(natural response) and the particular solution(forced
response).

Determination of the Complete Response:

Let us use the same RLseries circuit with external DC excitation to illustrate how to
determine the complete response b% the addition of the natural and forced
responses. The circuit shown in the figure
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Fig: RL circuit with external DC excitation

was ana(I}/zed earlier, but by a different method. The desired response is the current
i(t), atn now we first express this current as the sum of the natural and the forced
current,

i=intif
The  functional form of the natural response must be the same as that

obtainedwithout anP/, sources. We therefore replace the step-voltage source by a
short circuit and call' it the RL source free series loop. And

in can be shown to be :

in= Ae_Rt/L

where the amplitude Ais yet to be determined; since the initial conditionapplies to
thecomplete response, we cannot simply assume A = i (0).We next consider the
forced response. In this particular problem theforced response is constant, because
the source is a constant Vfor allpositive values of time. After the natural response
has died out, there can beno voltage across the inductor; hence the all ythe applied
voltage V appears across R, and theforced response is simply

if=V/R

Note that the forced response is determined completely. There is no unknown
amplitude. We next combine the two responses to obtain :

i = Ae RV viR

And now we have to apply the initial condition to evaluate A. The current is zero
Hr‘lOf to t = 0,and it cannot change value mstantaneouslc}{ since it is the current
owing througlfm an inductor. Thus, the current is zero immediately after ¢ = 0, and
A+V/R=0

So that
A= -V/R

And i= (V/R)(1 - e RYL,

Note carefully that A is not the initial value of i, since A = —=V/R, while i (0) = 0.

But In source-freeth,'Ecuits, A would be the initial value of the response

iven by in=_loe ( where 10 =A is the current at time t=0 ). When
orcing functions are present, however,we must first find the initial value
of the complete response and then substitute this in the equation for the
complete response to find A.Then this value of A is substituted in the
expression for the total response i




Amoregeneral solutionapproach:

The method of solving the differential equation by separating the variables or by
evaluating the complete response as explained above may not be possible always.
In such cases we will rely on a verypowerful method, the success of which will
depend upon our intuition or experience. We simply guess or assume a form for the
solution and then test our assumptions, first by substitution in the differential
equation, and then by applying the given initial conditions. Since we cannot be
expected to guess the exact numerical expression for the solution, we will assume a
solution containing several unknown constants and select the values for these
constants in order to satisfy the differential equation and the initial conditions.

Man){1 of the differential equations encountered in circuit analysis have a solution
which may be represente b{ the exponential function or by the sum of several
exponential functions.Hence Let us assume a solution for the following equation
corresponding to a source free RL circuit

[ di/dt+ (Ri/L)] =0
in exponential form as

i (t) = A.e slt

where A andsl are constants to be determlned Now substituting this assumed
solution in the original governing equation we have:

A.si1.e a1t RL=0

Or
(s1 + R/L). A.e*tt= 0

In order to satisfy this equation for all values of time, it is necessary thatA = 0, or
sl = —», or sl = —R/L. But if A = 0 or sl = —», then everyresponse is zero;
neither can be a solution to our problem. Therefore, wemust choose
sl = —-R/L
And our assumed solution takes on the form:

i (t) = A.e-RUL

The remaining constant must be evaluated by applying the initial conditioni (0)
= lo. Thus,A = lo, and the final form of the assumed solution is(again):

i (t) = 10.e RYL

A Direct Route: The Characteristic Equation:

In fact, there is a more direct route that we can take. To obtain the solution for the first
order DEwe solveds1 + R/L= 0 which is known as the characteristic equationand
then substituting this value of s1=-

Lin the assugwed S%|Ut| ni (tz h is sa |n this d t method
also. We can o dagac erlstlc n direct ,n rom t he eren I
e uati r}l without the nee qr substitut ur trial’solution. Con5|der t e
neral first-order differential equation:
a(d f/dt) + bf =0
where a andbare constants. We substitute s for the differentiation in the
operator d/dt original

differential equation resulting in




a(d f/dt) + bf = (as + b) f=0
From this we may directly obtain the characteristic equation:as + b = 0

which has the single root s = —b/a.Hence the solution to our differential equationis
then given by :

f=A.e_wa

This basic procedure can be easily extended to second-order differential equations
which we will encounter for RLC circuits and we will find it useful since adopting the
varla{_).Ie separation method is quite complex for solving second order differential
equations.

RLC CIRCUITS:

Earlier, we studied circuits which contained only one energy storage element,
combined with a passive network which partly determined how long it took either
the capacitor or the inductor to charge/discharge. The differential equations which
resulted from analysis were always first-order. In this chapter, we consider more
complex circuits which contain both an inductor and acapacitor. The result is a
second-order differential equation for any voltage or current of interest. What we
learned earlier is easily extended to the study of these so-called RLC circuits,
although now we need two initial conditions to solve each differential equation.
There are two types of RLC circuits: Parallel RLC circuits and Series
circuits .Such circuits occur routinely in a wide variety of applications and are very
important and hence we will study both these circuits.

Parallel RLC circuit:

Let us first consider the simple parallel RLC circuit with DC excitation as shown in
the figure below.

i
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Fig:Parallel RLC circuit with DC excitation.

For the sake of simplifyin?hth,e process of finding the response we shall also assume
that the initial current’in the inductor and the voltage across the capacitor are zero.
Then applying theKirchhoff's

current law (KCL)( i = ic +iL )to the common node we get the following
integrodifferential equation:




t
(V=v)/R = /LI VIt 4 c.dv/dt
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t

‘_’/R vdt’ + c.dv/dt

v/R
+1/

LS

to

Where v = vc(t) = vL(t) is the variable whose value is to be
obtained .

When we differentiate both sides of the above
equation once with respect to time we get thestandard
Linear second-order homogeneous différential
equation

C.(d%v/dt3)+ (1/R).(dv/dt)+ (1/L).v
=0
(d2v/dt%)+ (1/RC).(dv/dt)+ (1/LC).v
=0

whose solution v(t) is the desired response.

This can be written in the form:

[s® + (1/RC)s + (1/LC)1.v(t) = O

where ‘s’ is an operator equivalent to_(d/dt) and the

corresponding characteristic equation(as explained
earllerbas a direct route to obtainthe solution) is then

given by :

[s® + (1/RC)s + (1/LC)] = O

This equation is usually called the auxiliary equationor the
characteristicequation, as we discussed earlier .If it can be
satisfied, then our assumedsolution is correct. This is a quadratic
equation and the

roots s1 and s2are given as :
s1= — 1/2RC+V[(1/2RC)?= 1/LC]
s2= — 1/2RC— (1/2RC)*- 1/LC ]

And we have the general form of the response as :

v(t) = A1e51t+ A2eSZt

where s1 and s2 are given by the above equations and A1 and
A2 are two arbitrary constants which are to be selected to satisfy
the two specified initial conditions.

Definition of Frequency Terms:




The form of the natural response as given above givesvery little
insight intothe nature of the curve we might obtain if v(t)were
plotted as a functionof time. The relative amplitudes of A1l and
A2, for example, will certainly beimﬁortant In determining the
shape of the response curve. Furthertheconstants s1 and s2 can
be real numbers or conjugate complex numbers,depending upon
the values of R, L, andCin the given network. These twocases will
produce fundamentally different response forms. Therefore, it
willbe helpful to make some simplifying substitutions in the
equations for s1 and s2.Since the exponents s1ltand s2t must be
dimensionless, s1 and s2 musthave the wunit of some
dimensionless quantity “per second.” Hence in the equations for
s1 and s2 we see that the units of 1/2RC and 1/YLCmust also be

S l(i.e., seconds_l). Units of this type are called frequencies.
Now two new terms are defined as below :




w0 = 1/VLC
which is termed as resonant frequencyand
a = 1/2RC
which is termed asthe exponential damping coefficient

o the exponential damping coefficientis a measure of howrapidly the natural
response decays or damps out to its steady, final value(usually zero). And s, s1,
and s2, are called complex frequencies.

We should note that s1, s2, @, and w0 are merely symbols used to simplifythe
discussion of RLC circuits. They are not mysterious new parameters of any kind. It
is easier, for example, to say “alpha” than it is to say “the reciprocalof 2RC.”

Now we can summarize these results.
The response of the parallel RLCcircuit is given

by :
v(t) = A1esit+ Azes2tunrne... [1]
where
S1= a2-
—a + V Wozerrrrens *2 4
S2= —QA — Gé- Wo02uuaunsns *3+
12RC = e *4+
and
w0 = 1/ VLC........ *5 4

A1l and A2must be found by applying the given initial conditions.

We note three basic scenarios possible with the equations for s1 and s2
depending on the relative values of @and wo (which are in turn dictated by the
values of R, L, and C).

CaseA:

. 2 . .
fe 5 dfﬂg'f:'oe v\v'\hhaetr}s( ?"é erl{‘rce)d olél.%%snl oe‘pgrsgamlllag%tpel)sepg?%aeté\(\? erne %Iyn:u mbers,
slt s2t
v(t) = Ale " + A2e

Sinces1 and s2are both negative real numbersthis is the (algebraic) sumof two
decreasing exponential

terms. Sinces2 is a larger negatisvlet number it decays faster and then the response
is dictated by the first term Al1e™ " .

CaseB :

. 2 . .
T S, ARSI A BB F08 B Soual which eacs to wht s
v(t) = e (A1t + A2)
Case C:




. 2 ) ) )
& Nen (RO SRR SE AN 3l B3NS A 78 AR by :
v(t) = e_at(Al coswd t + A2 sinwd t)

wherewdis called natural resonant frequency and is given given by:

wd = Vwo>- a°

We should also note that the general response given bythe above
equations [1] through [5] describe not only the voltage but all three
branch currents in the parallel RLC circuit; the constants A1 and A2 will
be different for each, of course.

Transient response of a series RLC circuit:

Fig: Series RLC circuit with external DC Excitation

Ap[oni.ng KVL to the series RLC circuit shown in the figure above at t= 0 gives the
following basic relation :
V = vR(t) + vc(t) + vL(t)

Representing the above voltages in terms of the current iin the circuit
we get the following integroditferentialequation:

Ri + 1/c/idt + L. (di/dt)= V

To convert it into a differential equation it is differentiated on both sides with
respect to time and we get

L(d2i/dt?)+ R(di/dt)+ (1/C)i = 0

This can be written in the form




[S2 + (R/L)s + (1/LC)l.i = 0 where ‘s’ is an operator equivalent to (d/dt)

And the corresponding characteristic equation is then given by

[s® + (R/L)s + (1/LC)] = O

This is in the standard quadratic equation form and the rootssiands2are given by

s1,52 =— R2LVI(R/2L)%~ (1/LC)1= —a +V(a®- wo?)

Where a is known as the same exponential damping coefficientand wois
known as the sameResonant frequencyas explained in the case of Parallel RLC
circuit and are given by :

a=R/2L and wo=1/VLC

and A1 and A2must be found by applying the given initial conditions.

Here also we note three basic scenarios with the equations for s1 and s2
depending on the relative sizes of aand wo (dictated by the values of R, L, and C).

CaseA:

. 2 . .
> . ) ,
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i (t) = A1e® "+ Aze
Sinces1 and s2are both be negative real numbersthis is the (algebraic) sumof two decreasing exponential
terms.Sinc s2 is a larger negativelnumber it decays faster and then the response

is dictated by the first term Ale®
Case B :

_ . 2 . .
Tt ety ABed HaSa A, TR B gual which leads to whatis

. —at
i(t) =e (A1t + A2)
Case C:

. 2 . . .
O SR R AU S Z P BB S A

i (t) = e_at(Al coswd t + A2 sinwd t)

wherewdis called natural resonant frequency and is given given by:

wd = Vwo>- a°

Here the constants A1 and A2 have to be calculated out based on the initial
conditions case by case.




Summary of the Solution Process:

In summary, then, whenever we wish to determine the transient behavior of
asimple three-element RLCcircuit, we must first decide whether it is a series or a
parallel circuit, so that we may use the correct relationshipfor a. The two equations

are
1/2RC (parallel RLC)
R/2L (series RLC)

a
a

Our second decision is made after comparing awith
wo, which is given foreither circuit by wo= 1 /VLC

+ Ifa > w0, the circuit is over damped, and the natural
response has the form

1 2t

fn(t) = AreS 1+ AzeS
where

s1, 2= —a ir\f(az-woz)

+ |If a = wo, then the circuit is critically dampedand

fn(t) = e (A1t + A2)

+« And finally, ifa < w0, then we are faced with the
underdampedresponse,

fn(t) = e_at(Al coswd t + A2 sinwd t)
where . .
wd=\/(w0 -—a )

Solution using Laplace transformation method:

In this topic we will study Laplace transformation method
of finding solution for the differential equations that govern
the circuit behavior. This method involves three steps:

* First the given Differential equation is converted into “s”
domain by t.akln%:] it’s Laplace transform and an algebraic
expression is obfained for the desired variable

* The transformed equation is split into separate terms by
using the method of Partial fraction expansion

* Inverse Laplace transform is taken for all the
individual terms using the standard inverse
transforms.

The expression we get for the variable in time domain is the

required solution.

For the ease of reference a table of important transform pairs we
use frequently is given below.




Table of Important Transform pairs

S (t) (Function) F(s) (Laplace Transform)

u(r) (unit step) /s
A(1) (unit impulse) 1
1

il

¢

(s+a)
, .
sin @t (s> + @)
—
cos at (Sz +m2)
.-
¢ “ sin ax (s+a) +@°
_Gta)
e cos ¥ (s +a)’ + 0’
( 1/5?
%(,Q sF(s)
[ fyde F(s)/s

This method is relativel simPerr compared to Solving the Differential equations
especially for higher order differential equations since we need to handle only

algebraic equations in ‘s’ domain. This method is illustrated below for the series
RL,RC and RLC circuits.

Series RL circuit with DC excitation:

Let us take the series RL circuit with external DC excitation shown in the figure
below.

v

(e,

Fig: RL Circuit with external DC excitation

The governing equation is same as what we obtained earlier.

V = Ri + Ldi/dt for t >0

Taking Laplace transform of the above equation using the standard transform
functions we get




V/s = R.I(s)+ LIsl(s) -i(0)]

It may be noted here that i(0)is the initial value of the current at t=0 and since
g1 our case at t=0 just when the switch is closed it is zero , the above equation
ecomes:

V/s = R.I(s)+ L[sl(s)] = I(s)

[R+ L.s]
v

or () 14 B (Expressing in the form of Partial
I(s) = [s{?ﬁ: 5 +Fﬁfractlons)

v 4

() ] [ (7:)] (R/L
Where A = S:R— s=0 = V/R and B = 5S=" ) =—V/R
Now substituting these values of A and B in the I(s) 4 g Wwe
expression for = < +[s—+,ﬁget

) vy
T s s

Takin? inverse transform of the above expression for I(s)using the standard
transform pairs we get the solution for i(t) as

i(t) = (V/R) (i)t (V/R) (R/L)t
(V/R) - .e (1 -e )

Which is the same as what we got earlier by solving the governing differential
equation directly.

RC Circuit with external DC excitation:

Let us now take the series RC circuit with external DC excitation shown in the
figure below.

X: i . RQ
P g _/VW —
) Ve(t)

\
ﬁ v (':15 vAt)

Fig: RC Circuit with external DC excitation

The governing equation is same as what we obtained earlier and is worked
out again for easy understanding :




Applying KVL around the loop in the above circuit we can write:
V = vR(t) + vc(t)
Using the standard relationships of voltage and current for an Ideal Capacitor we get
ve(t) = (1/c ) i(Ddt or i(t) = C.[dvc(t)/dt]
(Assuming that the initial voltage across the capacitor ve(0) = 0)
and using this relation, vR(t) can be written asvrR(t) = Ri(t) = R. C.[d vc(t)/dt]

Using the above two expressions for vR(t) and vc(t)the above expression for V can
be rewritten as :

V = R. C.[d vc(t)/dt] + vc(t)
Now we will take Laplace transform of the above equation using the standard Transform
pairs and rules:
V/s = R.C.s.vc(s) + vc(s)
V/s = vc(s) (R.C.s.+ 1)
vc(s) = (V/s)/ (R.C.s + 1)
vc(s) = (V/RC )/ [s. (s + 1/RC))]
Now expanding this equation into partial fractions we get
vc(s) = (V/RC )/ [s. (s + 1/RC )] = A/s + B/(s + 1/RC ) ----(1)
Where A =(V/RC )/ (1/RC )] =V and B = (V/RC)/ - (1/RC)] = -V
Substituting these values of A and B into the above equation (1) forvc(s)we get
vc(s) = (V/s) -[V /(s + 1/RC )] = V [(1/s) -{1 /(s + 1/RC)}]

And now taking the inverse Laplace transform of the above equation we get

ve(t) = v(1 - e “YRC

which is the voltage across the capacitor as a function of time and is the same
as what we obtainied earlier by directly solving the differential equation.

And the voltage across the Resistor is given by vr(t) = V-v¢c(t) = V-V(1 — e
—t/RC —
) = V.e _ukc




And the current through the circuit is given by i(t) = C.[dvc(t)/dt] = (CV/RC )e

—t/RC =(V/R )e —t/RC

Series RLC circuit with DC excitation:

i
— " RQ
7{0_ F W +} /T—
" V(1) vdt)
vV vi(<S L

Fig: Series RLC circuit with DC excitation

The current through the circuit in the Laplace domain is given by :

(V/s)
(R+Ls+1/Cs)

I(s) =

[since L [V ] = V/sand the Laplace equivalent of the series circuit is given by Z(s)
=(R+Ls + 1/Cs) ]

2 2 _ vy
= V/(Rs+Ls +1/C)=(V/L)/[s +
(R/L) s + 1/LC ] = (s+a)(s+h)
Where the roots ‘a’ and ‘b’ are
given by
a __Rzu*11cC
= R/2L+ and
b= wod

It may be noted that there are three possible solutions for for I{s) and we
will consider them. Case A: Both aand b are real and not equal i.e.

(R/2L) > 1/V LC

Then I(s) can be expressed as__(Y/L) K1 K2

I(s) = =" 4

WhereK1 = ]s=-a

[ —= —




(V/L)
(s+b)

(s+a)(s+b)

(V/L)
(b a)

(s+a)

(s+b)
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Wher K2 = 1s=-
e [ (V/L) b = VL)

o (s+a) (a b?( ) .
Substituting these values of K1 and K2 in the expression
for I(s) we get :

I(s (V/L) _ 1 (V/L) _ 1
S(s+a)(s+b) (b a) (s+a) ta b) (s+b)@Nd

i(t -

A7 R v &
(b a) (a b)

Case B : Both a and b are real and equal i.e. ( a=b=c))

i.e. (R/2L) =1/ \/ LC

I(s =(V/L)/ (s+c)2When a=

) b=c and

i(t) = (V). t ot

Case C : Both a and b are complexconjugates i.e.a = b* when (R/2L) < 1/V LC

Adopting our standard definitions of @ = R/2L w0 = 2
1 /VLCand w d= a’)
The roots a and b are given a=a+ jwdand b = a-
by jwd
Then I(s) can be expressed
as I(s) = = B+ K&
(s+a jod) (s+a+jwd) (s+a jwd) (s+a+j wd)
HereK3 = - Us)| s =- ) = (VL) - . (V/L)
(s+a jwd) o+ jowd mls= o+jwd TP
, (V/L) K3*=- (v)
Therefore: ma d Zied

Now substituting these values K3 and K3* in the above expanded equation for I(s)
we get

I(s) = (V/L) 1 _ (V/L) 1
2jod (s+a jod) 2jod (st+a+jod)
And now taking inverse transform
of I(s) we get

i_(t) (V/L) (V/L) €-ats € -

- . Z]md e-at. ejwd t- 2](1)(] ]Wd t
i(t)
— ( V/L ) 't:a)-;;ij:'][ (ejwd t-e -jwd

wd




i(t) = v e ® sin wqt
Summary of important formulae and equations:

RL circuit with external DC excitation ( Charging Transient ) :

-t./T

* i(t)=V/IR[1-e ]
* vi(t) =V (e T
* VR(t) =i(t).R=VI[1-e ¥/T}

Source free RL circuit ( Decay Transients) :

* i) = (VR) . e YT vr(t) = Rei(t)= Ve VT and vL(t) = - ve /T

RC circuit with external DC excitation ( Discharge Transients ):

vc( —t/RC
t) )
VR(t) =
—t/RC
=(V/IR)e
. . -t/RC
i(t)

Source free RC circuit ( Discharge transients) :

* vet) = Ve VT vrit) = Ve T and i(t) = vR(t)/R = (V/R)e /T

Series RLC circuit: For this circuit three solutions are possible :

1. ﬁ B’er’s feddlR {(F)%vzt!u'gt iS :rl'ferre'dstoaansda?uzov\\}grb i be de'g i rEggiven

(t) = A1e sit + A2e s2t

2. SRt c’a'llecyva crli'Rc[ Ilr))/ d_n‘{p d7eld tB eagrl% q%?/l which leads to
') = e" M(A1t + A2)

3. ompt por e'n S, dlﬁg%& Lv g‘ (sk%gv%hassla%ngns c}aht%\;oeen ng 0}1 2 E%F\yby:




i (t) = e_at(Al coswd t + A2 sinwd t)

where :

* a = (R/2L) and is called the exponential
damping coefficient w0 = 1/ /LCand is called
* the resonant frequency

wd = \/woz— azand is called the natural resonant frequency

Illustrative Examples:

Example 1:Find the current in a series RL circuit having R =2Q and L = 10H
when a DC voltage V of 100V is af)plled. Find the value of the current 5 secs.
after the application of the DC voltage.

Solution: This is a straightforward problem which can be solved by applying
the formula.

First let us find out the Time constant T of the series LR circuit which is given
by T = L/R secs.

Tt = 10/2 =5 secs
The current in a series LR circuit after the sudden application of a DC voltage
is given by :
i(t)at 5 secs =

100/211—675/5}=5(1—e"}=50(1—1/e)=31,48

i(t)at 5 secs = 31.48 Amps

Example 2: A series RL circujt has R= 25 Q and L = 5 Henry. A dc voltage
V of 100 V is applied to this circuit at t = 0 secs. Find :

(a) The equations for the charging current , and voltage across R & L
(b) The current in the circuit 0.5 secs after the voltage is applied.
(c) The time at which the drops across R and L are equal.

Solution: The solutions for (a) and (b) are straightforward as in
the earlier problem. (a)Time constant T of the series LR circuit
which is given by T = L/R

secs ~.t= 5/25 = 1/5 secs

* -t/T

It is also given by i(t) =1(1-e ) where I is the final steady state current and is equal to V/R

=100/25 (1-e Yy _ 4 (17 Ampsitt) =4 (1-e %) Amps

—5t
VR= 100 (1—e
The voltage drop across L can be found in two ways.




1. Voltage across Inductor vL = L di/dt
2.

But it is easier to find using the second method. « vL = 100 -- 100 (1—e_5t )
B vL = 100. e
- To ﬁng out the t|me at which the voltages across the Inductor and the
esistor are equal w

—5t —5t
ggr\m/e %ategh? %epressmns for vR = 100 (1—e ) and vL = 100.e and

simpler method is, we know that since the applied voltage is 1005y the condition vR
=vLwill aIsogxce satisfiedwhenvR =vL = 50 V. i.,e vR = 100 (1—e = 50 volts and

vl=100.e V. We
will solve the second | equation [ v = 100. eL st = 50 V ] to get t which is easier.

e-st = 50/100 =0.5.

Taking natural logarithm on both sides we get:

--5t.In(e) =In 0.5 i.e --5t.1=-0.693 ie t=0.693/5=
0.139 secs

.. The voltages across the resistance and the Inductance are equal
at time t = 0.139 secs

Example 3: In the ﬁ%ure shown below after the steady state condition is
reached , at time t=0 the switch K is suddenly opened. Find the value of the
current through the inductor at time t = 0.5 seconds.

a ﬁ # ¢

K

40 Q

B

—_ 100V 40 Q)
' 4H

Solution: The current in the path acdb ( through the resistance of 40 Q
alone) is 100/40 = 2.5Amps.( Both steady state and transient are same )

The steady state current through the path aefb gthrough the resistance of 40
Q and inductance of 4H ) is also = 100/40 = 2.5 Amps.

Now when the switch K is suddeni/ oBened the current through the path
acdb( through the resistance of 40 alone) immediately becomes zero
because this path contains only resistance. But the current through the
inductor decays gradually but now through the different path efdce

The deﬁaey current through a close L circuit | |ven by /T where | |s
g Y earC|rcru|t e?t ysst‘a)t%ec u';r)etnt Ocaref W %nere t htL ant e deIE/aF:{yopatﬁ
%yres:stors are there anc? %ence lg +40 = % d’




Hence t= L/R = 4/80 = 0.05 secs

-t /0.01
glgnce the current through the inductor at time 0.5 secs is given by i(t) @0.5secs =2.5.e B

/0.05 i.e i(t) @0.5secs = 2.5.e 10

i.e i(t) @0.5secs= 1.14x10 ~ 4 Amps

Example 4: In the circuit shown below the switch is closed to position 1 at
time t = 0 secs. Then at time t = 0.5 secs the switch is moved to position 2.
Find the expressions for the current through the circuit from 0 to 0. 5 msecs
and beyond 0. 5 msecs.

Solution:The time constant Tof the circuit in both the conditions is same
and is given by T = L/R = 0.5/50 = 0.01 secs

50 Q

U5 H




1. During the time t=0 to 0.5 msecs. i(t) is given by the stahqard expression for growing current
through a L R circuit: i(t)during 0 to 0.5 msecs = V/R ( 1—e

And t618é:urrent i(t) @ t= 0.5 msecs = 10/50 (1 e 0.5x10-370.01 )=0.2 (1
= 9.75

mA i(t) @ t = 0.5 msecs = 9.75 mA and this would be the initial
current when the switch is moved to position 2

2. During the time beyond 0.5 msecs ( switch is in position 2): The initial current is 9.75 mA..
-t/T

The standard ex ressro for the g |n en i(t) = —e ) IS o
) |c bIe now as | e | | c |on of I(T) = a
= S the |n |aI con | he curren QSItI 21s
ow a e: |on or t | OSItIO r rom fir s
galngl:p es ta |n re and |n| ial ent| a m overnin

ion in position 2 is given b
50i+0. 5d|/dt =5

We will use the same separation of variables method to solve this differential
equation. Dividing the above equation by 0.5, then multiplying by dt and
separating the terms containing the two variables i and t we get:

100i + di/dt = 10 i.e 100i.dt +di = 10.dti.edi =dt (10 di/ (10 -100i) =
-100i) i.e dt

Now integrating on both sides we get
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--1/100In (10 =t  ------m-m- (1)

--100i ) + K

The constant K is now to be evaluated by invoking the new
initial condition i(t) = 9.75 mAat t =0

--1/100 In ( 10 -

-3 =K=--1/100 In ( 10 - = --1/100 In
100x9.75X10 ") 0.975) (9.025)
Substituting this value of K in the above
equation (1) we get

--1/100 In ( 10 -- =t--1/100 In
100i ) (9.025)
--1/100 In ( 10 -- 100i ) + 1/100 In (9.025) =t
--1/100 [In ( 10 -- 100i ) -- In
(9.025)] =t
--1/100 . In[ (10 -- 100i ) /
(9.025)] =t
[( 10 -- 100i )/ (9.025)] =
In --100t
Taking antilogarithm to base e on both sides we
get:
(10 -- 100i ) / (9.025)] = ¢ 100t
(10 -- 100i ) = 9.025 x e 100t
(10 --9.025 x e 199 = 100
i = (10 --9.025 x 100t )/ 100 = 10/100 -- 9.025 x ¢ 100t
100
--100t

And finally i = 0.1 -0.09. e

The currents during the periods t = o to 0.5 mses and
beyond t = 0.5msec are shown in the figure below. Had the
switch been in position 1 all through, the current would have
reached the steady state value of 0.2 amps corresponding to
source voltage of 10 volts as shown in the top curve. But
since the switchis changed to position 2 the current changed
it’s path towards the new steady state current of 0.1 Amps
corresponding the new source voltage of 5 Volts from 0.5
msecs onwards.

Amp(l) -




Example 5: In the circuit shown below the switch is kept in
position 1 upto 250 usecs and then moved to position 2. Find

(a) The current and voltage across the resistor att = 100
psecs

(b)  The current and voltage across the resistor at t = 350
psecs




(a)
(b) -

Solution : The time constant T of the circuit is given by T = L/R =
200mH/8KQ = 25 psec and is same in both the Switch positions.

| ——Ea
0 O ANV

2 3 k VR(I) -
+

+
() 16V /j 200 mH 4 v,(f)

(a)The current in the circuit upto 250 psec ( till switch is in position 1) is
given by :




i(t) growing = V/R (1 -e /Ty = (16/8)x10 > (1-e /22 X100 o1 -e”

t/ 25 x10 —6) mA

e The current in the circuit @100pusec is given by
i(t) @100 psec = 2x (1 - e 100 HsEC/ 25 Hsec) ) 5 1-e Y ma=
1.9633 mA

i(t) @100 psec = 1.9633 m

* The Voltage across the resistoris given by VR@100 pusec

= R x i(t) @100 psec VR@100 psec = 8 KQ x1.9633 mA =
15.707 V

VR@100 psec = 15.707 V
(b)

e The current in the circuit @350 psec is the decaying current and is given by:

i(t)Decaying= 1(0).e where 1(0) is the initial current and in this case it is the growing current

@250usec. ( Since the switch is changed @250usec ) The time t is to be
reckoned from this time of 250 psec. Hence t = (350—250) = 100pusec. So
we have to calculate first i(t)growing(@250

psec)which is given by:

-t/ T --3 -t/ 25 usec
growm V/R ( = (16/8)X10 (1-e ) =
2x YEPSRECT 2x(1 e 1b) MA = 1.999 mA
I(t)growmg(@250 usec)= 1. 999 mA = (0)
Hence i(t)@350 usec =1(0).e -t/ =1.99%x e 100 psec 725 usecmA =

1.99x e ~ *mA = 0.03663 mA i(t)@350
psec = 0.03663 mA

» The voltage across the resistor vR @350 psec = Rxi(t@350 psec) =
8KQx0.03663 mA

VR @350 psec= 0.293V




Example 6: In the circuit shown below the switch is kept in position 1 up to
100 u secs and then it is moved to position 2 . Supply voltage is 5V DC . Find

a) The current and voltage across the capacitor att = 40 u secs
b) The current and voltage across the resistor at t = 150 u secs

] kL v

o, _o AW 0 —OW
[ 2 V(1) 2 R
[ . N +
hy T ,\ v 0) il C= vdl)

\_ | ) 200 pF|~ \_/ V -
(1)« i,(r)
(a) {b)

Solution:The time constan%‘r of the cirfgit is same in both conditions and
is given by T = RC = 40x10 x200x10x = 8 psec

a) The time t = 40 psec corresponds to the switch in position 1 and in
that condition the current i(t) is given by the standard expression
for charging current

i(t) = (VR) [e V71

i(t) @40 psec = 5v/40KQ xg 0/8 1 Amps = 0.125x][ e 1 mA = 0.84224

LA i(t) @40 psec = 0.84224 pA

The voltage across the capacitor during the charging period is given by

vil-e VT
v =5[1--e
(t) @40 40/8 ] =5[1-- e ] = 4.9663 Volts
C usec
vC(t) @40 = 4.9663
Hsec Volts

b) The time t = 150 psec corresponds to the switch in position 2 and the current i(t) is

given by the discharge voltage expression i(t) = [vc(t)o/Rl. e /T




Where vc(t)o is the initial capacitor voltage when the switch was
changed to position 2 and it is the voltage that has built up by 100
Msec during the charging time (switch in position 1 ) and hence is
given by

ve(t)@10opsec = 5[1- e 1098 | voIts = 5x[1- e 122 ]

Volts = 4.999 Volts
And now t=150 usec from beginning is equal to t = (150-100) = 50
Hsec from the time switch is changed to position 2.
Therefore the current through the resistogt?% 150 psec from the
beginning = i(t)150usec=5(4.999/40KQ). e
i(t)150psec = 0.1249 x e _/ = 0.241 pA

|(t)150|.lsec = 0.241 |.IA

And the voltage across the resistor = R x i(t) = 40KQ x 0.241
HA = 0.00964v

Example 7: In the circuit shown below find out the expressions for the
current il and i2 when the switch is closed at time t= 0

_ Xs 200

100V —* E 159§) Jo5H
- 7

Solution: It is to be noted that in this circuit there are two current loops 1
and 2 . Current i1 alone flows through the resistor 15 Q and the current i2
alone flows through the inductance0.5

H where as both currents i1 and i2 flow through the resistor 20 Q.
Applying KVL to the two loops taking care of this point we get

20(ir+i2)+ 15 =100 ie 351+ -----

20i2 =100 (1)

and 20(i1 +i2) + 0.5 di2/dt = 100 ; 20 i1+ 20 i2 +0.5

di2/dt = 100 ------- (2)

Substituting the value of i1 = [100/35 - = 2.86 - 0.57 i2 obtained from the
(20/35) i2] above

equation (1) into equation (2) we get :
20[2.86 - 0.57 i2] +20i2 + 0.5 (di2/dt) = 100
57.14 - 11.4 i2 +20i2 + 0.5 (di2/dt) = 100




(di2/dt) i2 +17.14 i2 = 85.72




-17.14t
The solution for this equation is given by i2(t) = K. e + 85.72/17.14 and the constant K

can be evaluated by_invokin% the initial condition. The initial current through
the inductor = 0 attimet=10.

Hence K = -- 85.72/17.14 = --5

Therefore i2(t) =5 (1-- e 17.14t ) Amps
And current i1(t) = 2.86 - 0.57 i2 = 2.86 - 0.57 [5 (1-e 17.14t )] =
0.01 +2.85e 17.14t Amps And current i1(t) = 0.01 + 2.85 e B

17.14t Amps

Example 8 : In the circuit shown below find an expression for the current
i(t) when the switch is changed from position 1 to 2 attimet=0.

400 1 60 Q
—— AN Ot AN ———
fy
I/
500 V — 10 %0.4&1

Solution: The following points are to be noted with reference to this circuit:

* When the switch is changed to position 2 the circuit is equivalent to
a normal source free circuit but with a current dependent voltage
source given as 10i.

* The initial current in position 2 is same as the current when the switch
was in position 1 ( for a long time ) and is given by 10 = 500/(40+60)
=5 Amps

The loop equation in position 2 is given by : 60i + 0.4 di/dt = 10ii.e ( 50/0.4 )
i +di/dt=20

Writing the equation in the ‘s’notation where ‘s’ is the operator equivalent to
(d/dt) we get

(s+ 125) i = 0 and the characteristic equation will be (s+ 125) =0
Hence the solution i(t) is given by i(t) = K. e the "125t. The constant K can be
evaluated by invoking

initial condition that i(t) @ t=0 is equal to 10 = 5 amps .Then the above equation
ecomes:

5 =K. e_125x0 i.e K=5 and hence the current in the circuit when the

switch is changed to




position 2 becomes:

i(t) =5.e

--125t

Am

ps




Example 9 : In the circuit shown below find an expression for the current
i(t) when the switch is opened at time t= 0

100 *
N\ OO
S

*i
100ViL o ?10!1

4 uF

T

Solution: The following points may be noted with reference to this circuit:

* When the switch is opened the circuit is equivalent to a normal

sou5r_ce free circuit but with a current dependent voltage source given
as 5i.

* The initial current 10 when the switch is opened is same as the current
when the switch was closed for a long time and is given by |0 = 100/
(10+10) = 5 Amps

The loop equation when the switch is opened is given by :

(1/4x10_6)fidt + 10i = 5i
(1/4x10 %) idt + 5i = 0
Differentiating the above equation we get :

5.(di/dt) + (1/4X10_6)i =0 i.e.=(di/dt) + (1/20 x 10_6)i =0

Writing the above equation in the ‘s’notation where ‘s’ is the operator
equivalent to (d/dt) we get

(s+ 1/20 x 10_6 ) i = 0 and the characteristic equation will be ( s+ 1/20 x
107 %) =0

The solution i) is given by 106 116 constant K can be

i(t) g.tK AC T the initial evaluated by invoking

equalto T C I(t) @t=ols 10 = 5 amps .Then the above
equation becomes:

5=K.e Y20X10=6; \ _ 5 and hence the current in the

circuit when the switch is opened

becomes: i(t) =5.e -t/20 x 10—6 Amps

Example 10: A series RLC circuit as shown in the figure
tlace)lc\)/ka&asFR g 5Q,L= 2H and C = 0.5F.The supply voltage is
. Fin




a) The current in the circuit when there is no initial charge
on the capacitor.

b) The current in the circuit when the capacitor has initial
voltage of 5V

c) Repeat question (a) when the resistance is changed to
4Q




d) Repeat question (a) when the resistance is changed to 1 Q

—— R Q
M-
VR(')

i v

v((f—) +

Solution: The basic governing equation of this series circuit is given by :
Ri + 1/Clidt + L. (di/dt)=V

On differentiation we get the same equation in the standard differential equation

form

L(d2i/dt?)+ R(di/dt)+ (1/C)i = 0

By dividing the equation by L and using the operator ‘s’ for d/dt we get
theequation in the form of'characteristic equation as :

[s2 + (R/L)s + (1/LC)] = O
Whose roots are given by:
s1,52 =— R/2L:I:w/[(R/2L)2— (1/LC)]= —a i-\/(az- woz)
and three types of solutions are possible.
. 2 . .
1. %u?nh’é’r's,'-ﬁa%?%% EeindelRremtahs $2 3602 Psmsagive real
responsegiven by )
'(t) 1t 2t
_ : _ 2
2. g Erm%dlfye%ﬁﬂe%réégéﬁggg NeR
, ()
3- 59l Shen Ko A2 RY Lot
i(t) = e “Y(A1 coswd t + A2 sinwd t)

wherewdis called natural resonant frequency and is given given by:

wd = Vwo“- a

s s
Ale + A2e
s2 are equal which leads to what is called

e_at(Alt + A2)

s& and sa will have nonzer%imaginary components,
r damped responsegiven by :

>
Il =

The procedure to evaluate the complete solution consists of the following steps
for each part of the question:

1. We have to first calculate the roots for each part of the question and
dependl_n% on to which case the roots belong we have to take the
appropriate solution .

2. Then by invoking the first initial condition i.e i = 0 at t=0 obtain the first
relation between A1 and A2or one of its values.
3. If one constant value is obtained directly substitute it into the above

solution and take its first derivative. Or else directly take the first
derivative of the above solution




4. Now obtain the value di/dt @ t= ofrom the basic RLC circuit equation by
invoking the initial conditions of vC@ t=0 and i(t) @ t=0 . Now equate this to
the differential of the solution for i(t) to get the second relation between A1
and A2( or the second constant . Now using these two

equations we can solve for A1 and A2 and subsititute in the solution for i(t) to
get the final solution.

(a)s1,s2 = — R2LHVI(R/21)%= (1/LC)] = (-5/2x2)+V[(5/2x2)° - (1/2x0.5)] = -1.25 +
0.75.
i.,e.s1=--0.5and s2 =--2

In this case the roots are negative real numbers and the solution is given by :

i (t) = A1e® 4 A2e%?t= A1e 0ty A2t (1)

Now we will apply the first initial condition i.e i(t) = 0 at t=0 .Then we get
0=~ 2?0 e ArA2=0

The basic equation for voltage in the series RLC circuit is given as :

V = R.i(t) + vc(t) + L. di/dt = 1/L [ V -R.i(t) -
(di/dt) i.e vC(t)
At time t=0 we get
=1/L[V vC(t=0)
(di/dt)@et=0  -R.i(t=0) - | e (2)

But we know that the voltage across the capacitor and current are zero at time
t=0.
Therefore (di/dt)@ t=0 = V/L =10/2 =5 = -----—-- (3)
Now the equation for i(t) at equation (1) is
differentiated to %egt

(di/dt) = -0.5A1e 2A2e

2t
and the above value of (di/dt)@ t=0 = 5 is substituted in that to get the second equation with A1 and A2
= 0581 020
(di/dt)@ t=0 ) 2X0 = ‘0.5A1“
=5 2A2
Now we can solve the two equations for A1
and A2
A1+ A2=0 -0.5A1--2A2 to Al =
and =5 get 10/3 and A2 = --10/3
(10/3)e”*"
And the final solution for 2t
i(t) is : e 1] Amps

(b) ~ Attime t=0 the voltage across the capacitor = 5V ie. vC(t=0) = 5V .
But i(t=0) is still =0.using these values in the equation (2) above we get

(di/dt)@ t=0 = Y2 (10-5 ) = 2-5
Then the two equations in A1 and A2 are A1+ A2 = 0 and -0.5A1--2A2 =2.5
Solving these two equations we get A1 =5/3 and A2 = -5/3

And the final solution for i(t) is : (5/3)[e %% &%t} Amps

(c) The roots of the characteristic equation when the Resistance is changed to




2

golu%( nfi_g\//% éLr ( ( 2=.‘]al= ﬂwflj/ )é ‘/n[c(j“ X2)" -

en
(1) = e~ “Y(ALt + A2) = e T (ALL + A2) e (4)

Now using the initial condition i(t) = 0 at time t=0 we get A =0

We have already found in equation (3) for the basic series RLC circuit (di/dt)@
t=0 = 5




Now we will find di(t)/dt of equation (4) and equate it to the above value.

di /dt = -e A1t + A2) + e 1Y (A1) = e 1Y [AL - ALt -A2] and

(di /dt) @t=0= e X0 [A1 - A1x0 -A2] i.e A1 - A2 = 5
Therefore A1 =5 and A2 =0

And the final solution for i(t) is i(t) = 5te_1tAmps

(d) Roots of the characteristic equation when the resistance is changed to 1 Q
are :

s1,52 = — R2LEVI(R/2L)%= (1/LO)] = (-1/2x2) £V [(1/4)% - (1/2x0.5)] = --0.25 +j0.94

L , . —at
The roots are complex and so the solution is then given by : i (t) = e a (A1 coswd

t + A2 sinwd

t)Where a = 0.25 and wd= 0.9465

Now we will apply the initial conditions to find out the constants A1 and A2

Firsf initial condition is i(t)@t=0 = 0 applying this into the equation : i (t) =

gbve(él coswdft +t66 sinwd t) we get A1 = 0 and using this value of Al in the
quation for i(t) we gét

i (t (A2 sinwd t

= e . . g g .
%%es?éagéu%'ﬁ%%dgf?ﬁéa'%er.eE']ﬂ%e&‘?QSit'.”ﬁ'c?Jv QP UL RPN S BBV quERTh

currenti.e:i(t) =e ~ (A2 sinwd t) and
equate it to 5 to get the second constant A2

di (t) = e_a (A2 wd cos wd t) + (A2 sinwd
de . y.-ae ™

di (t)

/dt @t=0 =A2. wd=5

i.e Ay =5/wyg=5/0.94 =53

Now using this value of A2 and the values of a = 0.25 and wd = 0.94in the
above expression for the current we finally get :

i (1) = e 252,569 sin 1.9465t)
The currents in all the three different cases (a), (c) and (d) are shown below :
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UNIT-2

TWO PORT NETWORKS

Introduction

Impedance Parameters

Admittance Parameters

Hybrid Parameters

Transmission Parameters (ABC D)
Conversion of one Parameter to other
Conditions for reciprocity and symmetry
Interconnection of two port networks in

Series ,Parallel and Cascaded
configurations

Image parameters

* Important Formulae, equations
and relations Illustrative
* problems




Introduction:

A general network having two pairs of terminals, one labeled the “input
terminals’’ and the other the “output terminals,”” is a very important building
block in electronic systems, communication systems, automatic control
systems, transmission and distribution systems, or other systems in which an
electrical signal or electric energy enters the input terminals, is acted upon
by the network, and leaves via the output terminals. A pair of terminals at
which a signal may enter or leave a network is also called a port, and a
network like the above having two such pair of terminals is called a Two -
port network. A general two-port network with terminal voltages and
currents specified is shown in the figure below. In such networks the relation
between the two voltages and the two currents can be described in six
different ways resulting in six different systems of Parameters and in this
chapter we will consider the most important four systems.

Impedance Parameters: Z parameters (open circuit
impedance parameters)

We will assume that the two port networks that we will consider are
composed of linear elements and contain no independent sources but
dependent sources are permissible. We will consider the two-port network as
shown in the figure below.

Fig: A general two-port network with terminal voltages and currents
specified. The two-port network is composed of linear elements,
possibly including dependent sources, but not containing any
independent sources.

The voltage and current at the input terminals are V1 & 11, and V2 & 12 are
voltage and current

at the output port. The directions of 11 and I2 are both customarily selected
as into the network at the upper conductors (and out at the lower
conductors). Since the network is linear and

contains no independent sources within it, V1 may be considered to be the
superposition of two components, one caused by 11 and the other by I2.
When the same argument is applied to V2, we get the set of equations
V1 = Z1111 + Z12I2
V2 = Z21lh + Z2212

This set of equations can be expressed in matrix notation as

|
V1 2Z11 212 1




And in much simpler form as

V2 2Zx Z»

[V] =[Z][1]

I
2




Where [V] ,[Z] and [l]are Voltage, impedance and current matrices. The
description of the Z parameters, defined in the above equations is obtained
by setting each of the currents equal to zero as given below.

Z11 = V1/11 | 12=0
Z12 = V1/12 | 11=0
Z21 = V2/11 | 12=0
Z22 = V2/12 | 11=0

Thus ,Since zero current reﬁults from an ?Pet)-circu't termination, the Z
parameters are known as the Open-circuit Impedance parameters. And

mare specifically Z11 & Z22 are called Drivin oint Impedances and Z
{rié _%pzelcg(/ee lcyaﬁ?ea/ Reverse ancf ﬁorwar tra sPer'l’mpegances 12

A basic Z parameter equivalent circuit depicting the above defining
equations is shown in the figure below.

!

Fig: Z-Parameter
equivalent
circuit




Admittance parameters: ( Y Parameters or Short circuit
admittance parameters)

The same general two port network shown for Z parameters is
applicable here also and is shown below.

Fig: A general two-port network with terminal voltages and currents
specified. The two-port network is composed of linear elements,
possibly including dependent sources, but not containing any
independent sources.

Since the network is linear and contains no independent sources within, on
the same lines of Z parameters the defining equations for the Y parameters
are given below. 11 and 12 may be

considered to be the superposition of two components, one caused bx V1
and thet other by V2 and then we get the set of equations defining the Y
parameters.

11 =Y11V1 + Y12V?2
I = Y21V1 + Y222

where the Ys are no more than proportionality constants and their
dimensions are A/V (Current/Voltage). Hence they are called the Y (or
gdlmlttance) parameters. They are also defined in the matrix form given
elow.

11 Y11 Y12 V1
12 Y21Y2 V2

(1 =I[Lylivl
The individual Y parameters are defined on the same lines as Z parameters
but by setting either of the voltages V1 and V2 as zero as given below.

And in much simpler form as

iTsh%h?‘%%Sg '”af‘,’H?”SE'tV?nstaé/cE%até"’%?ﬂe%ﬁ.%s'éa'ura“t?c?n”s'?‘ SR AN, S
must beapplied to the basic defining

equations are very important. In the first equation for example; if we let V2
zero, then Y11 is given by the ratio of I1 to V1. We therefore describe Y11 as
the admittance measured at the input terminals with the output terminals

short-circuited (V2 = 0). Each of the Y parameters may be described as a




current-voltage ratio with either V1 = 0 (the input terminals short
circuited) or V2 = 0 (the output terminals short-circuited):




Y11 = wit V2 =
11/V1 h 0

Y12 = V1 =

11/V2 with 0

Y2 = V2 =

1 12/V1i with 0
V1 =

Y212/v2 with 0

Because each parameter is an admittance which is obtained by short
circuiting either the output or the input port, the Y parameters are known as
the short-circuit admittance

parameters. The specific name of Y11 is the short-circuit input
admittance, Y22 is the short-

circuit output admittance, and Y12 and Y21 are the short-circuit
reverse and forward transfer admittances respectively.

Fig: Y parameter equivalent circuit

Hybrid parameters: ( h parameters )

h parameter representation is used widely in modeling of Electronic
components and circuits particularly Transistors. Here both short circuit and
open circuit conditions are utilized.

The hybrid parameters are defined by writing the pair of equations relating
Vi, 11, V2, and I2:

V1l = hil. 11 + h12.V2
12 = h21.11 + h22.V2
Or in matrix form :
Vi I1
h
12 V2

The nature of the parameters is made clear by first setting V2 = 0. Thus,




with V2

=0 = short-circuit input impedance
with V2

=0 = short-circuit forward current gain




Then letting 11 = 0, we obtain

h: = with = open-circuit reverse
2 Vi/Vz2 11=0 voltage gain

hz = with = open-circuit output
2 12/V2 11=0 admittance

Since the parameters represent an im?edance,,an admittance, a voltage
gain, and a current gain, they are called the “hybrid’’ parameters.

The subscript designations for these parameters are often simplified when
they are applied to transistors. Thus, h11, hi2, h21, and h22 become hi, hr,

hf, and ho, respectively, where the subscripts denote input, reverse, forward,
and output.

Fig: h parameter equivalent circuit

Transmission parameters:

The last two-port parameters that we will consider are called the t
parameters, the ABCD parameters, or simply the transmission
parameters. They are defined by the equations

V1l = A.V2 - B.I2
11 = C.V2 - D.I2

and in Matrix notation these equations can be written in the form

Vi =AB V2
11 = CD -I2

where V1, V2, 11, and 12 are defined as as shown in the figure below.




Fig: Two port Network for ABCD parameter representation with
Input and output Voltages and currents
The minus signs that appear in the above equations should be associated
with the output current, as (—12). Thus, both I1 and —I2 are directed to the
right, the direction of energy or signal transmission.

Note that there are no minus signs in the t or ABCD matrices. Lookin% again
at the above equations we see that the quantities on the left, often thought
of as the given or independent

variables, are the input voltage and current, V1 and I1; the dependent
variables, V2 and 12, are the output quantities. Thus, the transmission
parameters provide a direct relatlonshlP between input and output. Their
major use arises in transmission-line analysis and in cascaded networks.

The four Transmission parameters are defined and explained below.

First A and C are defined with receiving end open circuited i.e. with 12 = 0

A = with = Reverse
V1/V2 12 = 0 voltage Ratio
C= with = Transfer
11/V2 12 =0 admittance

Next B and D are defined with receiving end short circuited i.e. with V2 = 0

B = with V2 = = Transfer
Vi/=I2 O impedance
D=1/ with V2 = = Reverse

1 2 0 current ratio

Inter relationships between different parameters of two
port networks:

Basic Procedure for representing any of the above four two port Network
parameters in terms of the othér parameters consists of the following steps:

1. Write down the defining equations corresponding to the parameters
in terms of which the other parameters are to bé represented.

2. Keeping the basic parameters same, rewrite/manipulate these two
equations in such a

way that the variables V1 ,V2 .11 ,and I2 are arranged corresponding to
thé defining equations of the first parameters.




3. Then by comparing the parameter coefficients of the respective
variables V1 ,V2 ,I1 ,and 12 on the right hand side of the two sets of
equations we can get the inter relationship.




Z Parameters in terms of Y parameters:

Though this relationship can be obtained by the above steps, the
following simpler method is used for Z in térms of Y and Y in terms

of Z:

Z and Y being the Impedance and admittance parameters (Inverse), in
matrix notation they are governed by the following inverse relationship.

[Z)=[¥1!

Or:

-1
{Zn le]z[yu leJ
Zy 2y Yo Yo

Thus :

= AMapdiZ el

AY

¥y Y

| Here _\Y={ . Yﬂ:}'n Yoy =¥y }"21:’

L L = 2

Z Parameters in terms of ABCD parameters:

The governing equations are:
= AV2 -

V1 BI2
=CV2 -

1 DI2

from the second governing equation [ 11 = CV2 - DI2 ] we can write
’V: :l_[l ;_2_1_)
- C e
Now substituting this value of V2 in the first governing equation [V1 = AV2 -
BI2] we get

|1 D . ]
V.;-,E.Ilaf_c__lzJ A-BI,

~ AD-BC
-
Comparing these two equations for V1 and V2 with the governing equations

of the Z parameter network we get Z Parameters in terms of ABCD
parameters:

=% §
k=

N
fo
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N
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g 1 R
L
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O = |
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|
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Z Parameters in terms of h parameters:




The governing equations of h parameter network are:

Vi = hiili + h12 V2
12 =h2111 + h22 V2

From the second equation we get

Ay 1

,—‘. .IT +—_ L

ﬂﬁ i h;z N

Substituting this value of V2 in the first equation for V1 we get:

/o =-

Vi=h i vhy Y,
o’ 1 1
[ { g |
=l by #Bg =y ¥l |
l. 2z hy A,I
\ h..
)
Ny L

Now comparing these two equations for V1 and V2 with the governing
equations of the Z parameter network we get Z Parameters in terms of
h parameters:

2 2 Here h = hi1 h22 - h12 h21

Y Parameters in terms of Z parameters:

Y and Z being the admittance and Impedance parameters (Inverse), in
matrix notation they are governed by the following inverse relationship.

Or:
{Y“ YlZ]:{Zn Z}z—i—1
21 In Zy 2y
Thus:
7 A -
Yil ____2;2__’ Y’Z = — :
AZ g AZ
- 7
X ;_—__&,"1', =



Here Z = z311232-212221

The other inter relationships also can be obtained on the same lines
following the basic three steps given in the beginning.

Conditions for reciprocity and symmetry in two port
networks:

A two Port network is said to be reciprocal if the ratio of the output response
variable to the input excitation variable is same when the excitation an
response ports are interchanged.

A two port network is said to be sl%/mmetrical if the port voltages and
currents remain the same when the input and output ports are
interchanged.

In this topic we will get the conditions for Reciprocity and symmetry for all
the four networks.
The basic procedure for each of the networks consists of the following steps:
Reciprocity:
* First we will get an expression for the ratio of response to the excitation
in terms of the particular parameters by giving voltage as excitation

at the input port and considering the current in the "output port as
response ( by short circuiting the output port i.e setting

V2 as zero ). i.e find out ( 12 /V1)

* Then we will get an exgression for the ratio of r_esr?onse to the
excitatjon In terms of th sag1e rParamet rs by giving voltage as
excitation at the output port and considering the

current in the input port as response ( by short circuiting the input port
i.e. setting V1 as zero ). i.e find out ( 11 /V2)

* Equating the RHS of these two expressions would be the condition for
reciprocity

Symmetry:

* First we need to get expressions related to the input and output ports
using the basic Z or Y parameter equations.

* Then the expressions for Z11 and Z22 ( or Y11 and Y22 ) are
equated to get the conmdition for reciprocity.

Z parameter representation:
Condition for reciprocity:

Let us take a two port network with Z parameter defining equations as given
below:




Vi1 = Ziuil1 + Z1202
V2 = Z2111 + Z2212




First we will get an expression for the ratio of response (I2) to the excitation
(V1) in terms of the Z parameters by giving excitation at the input port and
considering the current in the output port as response ( by short circuiting
the output port i.e. setting V2 as zero ).The corresponding Z parameter
circuit for this condition is shown in the figure below:

I T I,
r- v 0 o -

( Pl note the direction of 12 is negative since when V2 port is shorted
the current flows in the other direction )

Then the Z parameter defining equations are :

V1i=211.11 - Z12.12 and
0 =2Z21.11—-2Z22.12

To get the ratio of response (12) to the excitation (V1) in terms of the Z
parameters I1 is to be eliminated fom the above equations.

So from equation 2 in the above set we will get 11
= 12. Z22/ Z21 And substitute this in the first
equation to get

V1 = (Z11 .12. Z22/ Z21)- Z12. 12 =12 [(Z11. 222/ 221 ) - Z12] =12
[(Z11 . Z22- Z12.Z21) / Z21) ]

12 = V1. Z21/(Z11 . Z22—- Z12.Z21)

Next, we will get an expression for the ratio of response (I1) to the excitation
(V2) in terms of the Z parameters by giving excitation V2 at the output port
and considering the current 11 in the

input port as response (by short circuiting the input port i.e, setting V1 as

zero). The corresponding 'Z parameter circuit for this condition is shown in the
figure below:

[,
—o0 o— .
+
-4 In Out v,
[ —

( Pl note the direction of current I1 is negative since when V1 port is
shorted the current flows in the other direction )

Then the Z parameter defining equations are :




0 =-Z11.11 + Z12. 12 and
V2 =-2Z21.11 + Z22.12




To get the ratio of response (I1) to the excitation (V2) in terms of the Z
parameters 12 is to be eliminated fom the above equations.

So from equation 1 in the above set we will get 12
= 11. Z11/ Z12 And substitute this in the second
equation to get

V2 = (Z22.11. Z11/ Z12)—- Z21. 11 = 11 [(Z11.2Z22/212)-221]=11
[(Z11 . Z22—- Z12.Z21 )/ Z12) ]

11 =V2. Z12/(Z11 . Z22—- Z12.221))

Assuming the input excitations V1 and V2 to be the same, then the
condition for the out responses I1 and 12 to be equal would be

Z12 = Z21
And this is the condition for the reciprocity.
Condition for symmetry:

To get this condition we need to get expressions related to the input and
output ports using the basic Z parameter equations.

V1 = Z1111 + Z1212
V2 = Z2111 + Z2212

To get the input port impedance 12 is to be made zero. i.e V2 should be open.

V1=2Z11.I1ie Z11 =Vi/I1 | 12=0

Similarly to get the output port impedance I1 is to be made zero. i.e V1 should
be open.

V2 =222.12i.e Z22=V2/12 | I1=0

Condition for Symmetry is obtained when the two port voltages are equal
i.e. V1 = V2 and the two port currents are equal i.e. 11 = 12. Then

V1/I1 = l.e Z11

V2/12 = Z2»

And Zi1 = is the condition for symmetry in Z
hence Z2> parameters .

Y parameter representation:

Condition for reciprocity :

Let us take a two port network with Y parameter defining equations as given
below:

I = Y11V1 + Y122




12 = Y21V1 + Y22V2




First we will get an expression for the ratio of response (12) to the excitation
(V1) in terms of the Y parameters by giving excitation (V1) at the input port
and considering the current (12) in the

output port as response ( by short circuiting the output port i.e. setting V2
as zleé'ob) Then the second equation in Y parameter defining equations
wou ecome

12 =Y21V1 +0and 12/ Y2
V1 = 1

Then we will get an expression for the ratio of response (I1) to the excitation
(V2) in terms of the Y parameters by giving excitation (V2) at the output port
and considering the current (I1) in the

input port as response ( by short circuiting the input port i.e setting V1 as
%ero ) Then the first equation in Y parameter defining equations would
ecome

11 =0+ Y12V2and 11/V2 =Y12
Assuming the input excitations V1to be the same, then the condition for
and V2the out
responses 11 and 12 to be equal
would be

11/V2= 12/WV1

And hence Y12 = Y21 is the condition for the reciprocity in the
Two port network with Y parameter representation.

Condition for symmetry:

To get this condition we need to get expressions related to the input and
output ports ( In this case Input and output admittances ) using the basic Y
parameter equations

I = Y11V1 + Y122
12 =Y21V1 + Y22V2

To get the input port admittance, V2 is to be made zero. i.e V2 should be
shorted.

I1 =Y11.V1ie Y11 =11/V1 | V2=0

Similarly to get the output port admittance V1 is to be made zero. i.e V1
should be shorted.

12 =Y22.V2ie Y22 =I2/V2 | V1=0

Condition for Symmetry is obtained when the two port voltages are equal
i.e. V1 = V2 and the two port currents are equal i.e. I1 = 12. Then

11/V1 = 12/V2




And henceY11 = Y22 is the condition for symmetry in Y parameters.

ABCD parameter representation:
Condition for reciprocity :

Let us take a two port network with ABCD parameter defining equations as
given below:




V1l = A.V2 - B.12
11 = C.V2 - D.I2

First we will get an expression for the ratio of response (12) to the excitation
(V1) in terms of the ABCD parameters by giving excitation (V1) at the input
port and considering the current (12) in

the output port as response ( by short circuiti he output port i.e. setting

ng t
V2 as zero ?Then the first equation in the ABC% parameter defining
equations would become

V1 =0 -B.l12 = B.I2
i.el2/V1i=-1/B

Then we will interchange the excitation and response i.e. we will get an
expression for the ratio of response (I1) to the excitation (V2) by giving
excitation (V2) at the output port and considering

the current (I1) in the input port as response ( by short circuiting the input
port i.e. setting V1 as zero )

Then the above defining equations would become

0= A.V2 -
B.I2 11 =
C.V2 - D.I2

Substituting the value of 12
equation we get

A.V2 /B from first equation into the second

I=C.V2-D.A.V2/B=V2(C-D.A/B)
i. ! I1/V2 =(BC-DA)/B=-(AD -
e BC)/B

Assuming the input excitations V1 and V2 to be the same ,
then the condition for the out responses I1 and 12 to be equal

would be
InL/V2 = 12/V1
- (AD -BC)/B = -
i.,e 1/B

i.e (AD -BC) =1

And hence AD - BC = 1 is the condition for
Reciprocity in the Two port network with ABCD
parameter representation.

Condition for symmetry:

To get this condition we need to get expressions related to
the input and output ports. In this case it is easy to use the Z
parameter definitions of Z11 and Z22 for the input and output
ports respectively and get their values in terms of the ABCD
parameters as shown below.

V1= A.V2 - B.I2

11 = C.V2 - D.12




Z11 = V1/I11 | 12=0
Applying this in both the equations we get
Z11=V1Il | 2=0 = (A.V2-B.12)/(C.V2 - D.12) | 12=0
(A.V2 - B.0)/(C.V2 - D.0)
(A.V2)/(C.V2) = A/C

Z11 = A/C




Similarly 222 = V2/12 | 11=0

and using this in the second basic equation 11 = C.V2 - D.I2
________________________________________________________________________________________________________________________________________|




C.V2 =
we get 0 = C.V2-D.l2 or D.l:

V2 / =
I2 D/C
Z2> = D/C
And the condition for symmetry i.,e A/C =
becomes Zi1 = Z22D/C
Or A=D

Hence A = D is the condition for Symmetry in ABCD parameter
representation.

h parameter representation:

Condition for reciprocity :

Let us take a two port network with h parameter defining equations as given
below:

V1l = h1l. 11 + h12.V2
12 = h21. 11 + h22.V2

First we will get an expression for the ratio of response (12) to the excitation
(V1) in terms of the h parameters by giving excitation (V1) at the input
port and considering the current (12) in the output port as response ( by
short circuiting the output port i.e. setting V2 as zero )

Then the first equation in the h parameter defining equations would become

V1= hii.I1 + h1l.
h12.0 = 1

And in the same condition the second equation in the h parameter defining
equations would become

12 = h21. 11 + h22.0 M2l
= I]_

Dividing the second equation by the first equation we get

12 /V1 = ( h21. 11) / (h11. 11) = h21 /h11

Now the excitation and the response ports are interchanged and then we will get
an expression for the ratio of response (I1) to the excitation (V2) in terms of
the h parameters by giving excitation (V2) at the output port and
considering the current (I11) in the input port as response ( by short circuiting
the input port i.e. setting V1 as zero )

Then the first equation in h parameter defining equations would become

0 =hi11. 11 + hii. 11 = -




h12.vV2 i.e h12.v2
i.e. 11/
V2 = -h12/ h11l

Assuming the input excitations V1 and V2 to be the same, then the
condition for the out responses I1 and 12 to be equal would be

I1/V2 = 12/V1li.e. hi2=-h2a
i.,e = =-h12/ h1i1 = h21 /h11




Condition for symmetry:

To get this condition we need to get expressions related to the input and
output ports. In this

case also it is easy to use the Z parameter definitions of Z11 and Z22 for the
input and output ports respectively and get their values in terms of the h
parameters as shown below.

h parameter equations are: Vi = h11.11 + h12.V2
12 = h21. 11 + h22.V2

First let us get Z11 :
Z11 = V1/I1 | 12=0

=h11 + h12.vV2 /11
Applying the condition I2=0 in the equation 2 we get
0 = h21. 11 + h22.V2i.e -h21. 11 = h22.V2
or V2 = 11 (-h21 / h22)
Now substituting the value of V2 = [/ h22) in the above first expression for V1

11 (-h21 we get
V1 = h1l. 11 + h12. 11.( -h21 / h22)
Or V1/ = (h11l. h22 - h12. h21 )/ h22 = Ah/
11 h22

Or Z11 = Ah / h22
Where h = (hl1l. h22 - h12. h21
)

Now let us get 222 :
Z22 =V2/I2| 11 =0
Applying the condition I1 = 0 in the second equation we get

1= h21. 0 i.e V2/12 = 1/ h22

+ h22.V2
A =1/ h22
n
d
y4
2
2
Hence the condition for symmetry h/ (1/ h=1
Z11 = Z22 becomes ( h22) h22)
= i.e
Hence h = 1 is the condition for symmetry in h
parameter representa , — , —
| “iCondition for
dsymmelry
“ Zp=2y Ly =2y
Y Yo=Yy =Y,
h hy =~ hy Ah=1
ABCD AD=BC€=1 A=D




Different types of interconnections of two port
networks:
Series Connection:

Though here only two networks are considered, the result
can be generalized for any number of two port networks
connecfed in series.




Refer the figure below where two numbers of two port networks A and B are
shown connected in series. All the input and output currents & voltages with
directions and polarities are shown.

[ A [,A
B S T — - ?‘
V,A A V,A ‘

: 8 : l
| \/!5 V,B
- ,,____.___.l

Fig : Series connection of two numbers of Two Port Networks

Open circuit Impedance parameters (I_Z ) are used in char_acteriz_ingZ
the Series connected Two port Networks .The governing equations with
parameters are given below:

For network A :

Via =Zya hia + Zypp Ihs

Voa =Zoia g +Zyp 134
And for network B:
Vie =Zyp Lip + Zygp 1y

liwick Toponil

V. 228 "2B

28 =Zn lip
Referring to the figure above the various voltage and current relations are:

Vi=Via+Vig

Now substituting the above basic defining equations for the two networks
into the above expressions for V1 and V2 and using the above current
equalities we get:
Vi=Via+Vis
Zyalia +Ziaalaa) + Zyyplig + Zgp 1o
=1L (Zya +Zyp)+ 1y (Zygy + Zop)
And similarly
Va=Vou + Ve

=(Zyahia+ Zpalop) + (Zyyglig+ Zyyglop)
Vo=l (Zyy + Zyg)+ 1,(Zyy, + Zyg)

Thus we get for two numbers of series connected two port networks:
Vi =(Zy0 + Zy5p) 1, +(2 i Z

‘124 128) 1,
v (3 B g ,
2 =Ly s + Zy) (Zyp + Zp) Il

Or in matrix form:

[ -
—_—

v T L = N
" In Ziia * Zyp Laga *+ Zygg |[
4 y 4 X 7 7 H

'
] L ma o a3 2 ]




Thus it can be seen that the Z parameters for the series connected
two port networks are the sum of the Z parameters of the individual
two port networks.

Cascade connection:

In this case alsQ though here only two networks are considered, the result
can bde generalized for any number of two port networks connected in
cascade.

Refer the figure below where two numbers of two port networks X and Y are
shown connected in cascade. All the input and output currents & voltages
with directions and polarities are shown.

I i ~ax hiy Ly -

[ ——
|?—->—T‘—" l t ! +?
X Vox v Y Vay .V
2X 1Y 2y Ouzt

'u’# | AN

Fig: Two numbers of two port networks connected in cascade

Transmission ( ABCD ) parameters are easily used in characterizing the
cascade connected

Two port Networks .The governing equations with transmission parameters
are given below:

For network X:

Vix = Ax Vax ~ BxIax
Iix =Cx Vax = Dx Ix

And for network Y:
Viy = Ay Voy ~Bylyy
liy =CyVay — Dy lyy

Referring to the figure above the various voltage and current relations are:

L =Lyi-hy=hLyil; =1

Vi=VixiVox =Viy i Vo =Voy
Thfeln t-hlell verall frapsmission parameters for the cascaded network in matrix
form will becarnes | 1.

‘ "1\ H\J Vn
X !




A H‘ ( Ay B,
‘ {\ ”\

A, B, l
D, D,

Thus it can be seen that the overall ABCD Parameter matrix of
cascaded two Port Networks is the product of the ABCD matrices of
the individual networks.

Parallel Connection:

Though here only two networks are considered, the result can be generalized
for any number of two port networks connected in parallel.

Refer the figure below where two numbers of two port networks A and B are
shown connected in parallel. All the input and output currents & voltages
with directions and polarities are shown.

_9»—>—+—F-1— -
. i V.., A
6__‘__",___..'.._4

| I3

;_—’—r—-d

.‘.‘-_. 8

Fig: Parallel connection of two numbers of Two Port Networks

Short circuit admittance (Y) parameters are easily used in
characterizing the parallel connected

Two port Networks .The governing equations with Y parameters are given
below:

For network A:

Lia=Yna Via + Y4 Vou
La=Y54 Via + Y04 Vou

And for network B:

Lg=Y15 Vig * Y125 Va3

1/ T i 1/

7 . il
2B~ "21B "1B ' "22B " 23




Referring to the figure above the various
andcurrent relations are:

V=V, =Vig:Va=Vou =Vy
1I =IH A-IlB ;IZZIZA "'IZB
Thus

lxzhA*[w
=G aYn* Y2 4V24) + (Y1 8Y18 + Y128Y28)

=W *Yae) Vi + (Yips + Y128) V5
L=1,, + L
= V4t Y2 4Y18) + (Y18Y18 + Y228Y28)

=(rnﬂ-+YnB)V}+(XEA-+YnB)VE

voltage




Thus we finally obtain the Y parameter equations for the combined network

as:
b =(aa + Yp) Vi + (V24 +Yi28) V-
b=, # Yop) V) + (You + Y28) V2

Thus it can be seen that the overall Y parameters for the
parallel connected two port networks are the ksum of the Y

parameters of the individual two port networks.

Image impedances in terms of ABCD parameters:

Image impedances Zil and Zi2 of a two port network as shown in the figure

below are defined as two values of impedances such that :
a) When port two is terminated with an impedance Zi2 , the input

impedance as seen from Port one is Zil1 and
b) When port one is terminated with an impedance Zi1 , the input

impedance as seen from Port two is Zi2

- 9

1
il

|
A Zo

Zp
Figure pertining to condition (a) above

Corresponding Relations are : Zil =V1 /11 and Zi2= V2/-1I2




Figure pertining to condition (b) above

Corresponding Relations are : Zil =V1/-11and Zi2 = v2/I2

Such Image impedances in terms of ABCD parameters for a two port
network are obtained below:

The basic defining equations for a two port network with ABCD parameters

are .

V1l = A.V2 - B.I2
11 = C.V2 - D.I2

First let us consider condition (a).
Dividing the first equation with the second equation we get

V, AV, -BI,
171 cv,-DI,

But we also have Zi2 = V2 /- 12 and so V2 = - Zi2 12. Substituting this
value of V2 in the above we get

Z —AZI2 i [‘: i leI-E -+ f;

11

-CZ,-D CZ,+D
Now let us consider the condition (b):

The basic governing equations [V1 = A.V2 - B.12] and [I1 = C.V2 - D.I2]

are manipulated to get

v, = Dv, ___BI]
AD-BC AD-BC
CV. Al

But we also have Zil1 = V1 /- 11 and so V1 = - Zil I11. Substituting this
value of V1 in the above we get :




_DZ, +B
2 CZ, +A

Y

h
Parameters :

Solving the above equations for Zi1 and Zi2 we get :

Fo

en’. 2TV

Important formulae, Equations and Relations:

# Basic Governing equations in terms of the various Parameters:

) V1 = Z11l1 + Z1212

V2 = Zo1l + Z2202
11 = Y11V1 + Y12V2

I2 =Y21V1 + Y22V2
V1 = hll. I1 + h12.V2

. I2 = h21.11 + h22.V2
Vi= -
A.V2 B.l2
1= -

C.v2 D.l2




Conditions for Reciprocity and symmetry
for Two Port Networks in'terms of the
various parameters :

_: "Cc;;c;’ifi'oh for
; i csymmetry
= Zy=2y Z= sy
4 N2=Yy | Y=Y,
| y =—hy sh=1
ABCD | AD-BC=1 .

+ Relations of Interconnected two port Networks :

®* The overall Z parameters for the series
connected two port networks are the sum of
the Z parameters of the individual two port
networks.

®* The overall Y parameters for the parallel
connected two port networks are the sum of
the Y parameters of the individual two
port networks.

* The overall ABCD Parameter matrix of
cascaded two Port Networks._is the
product of the ABCD matrices of the
individual networks.




Illustrative problems :

Example 1: Find the Z Parameters of the following Two Port Network and
draw it’s equivalent circuit in terms of Z1 Z2 and Z3.

Solution: Applying KVL to the above circuit in the two loops ,with the
current notation as shown, the loop equations for V1 and V2 can be
written as :

VI =LZ +(I, + IZ)Z3

or Vi=(Z,+2Z,) 1, + Z,1, (i)
and V=L Z, + (I, + 1) Z, 4
or V,=2,1, +(2, +Z5) I, ...(if)

Comparing the equations (i) and (ii) above with the standard expressions
for the Z parameter equations we get :

Z=Z +Z,; 24y =2Zy;
Zy=2,;2,=2,+2,

Equivalent circuit in terms of Z1 Z2 and Z3 is shown below.




Example 2: Determine the Z parameters of the mt type two port network
shown'in the figure below.

1Yy

Solution:
From the basic Z parameter equations We know that

Z11 = V1/11 | 12=0

Z12 = V1/12 | 11=0

Z21 = V2/11 | 12=0

Z22 =V2/12 | 11=0
We will first find out Z11 and Z21 which are given by the common condition 12
=0
1. We can observe that Z11 = V1/I1 with 12=0 is the parallel combination of R1

and (R2 + R3) .
Z11 = R1 (R2 + R3) / (R1+R2 + R3)

2. Z21 = V2/11 | 12=0

By observing the network we find that the current I1 is dividing into I3 and
14 as shown in the figure where I3 is flowing through R2(and R3 also since
[2=0)

Hence V2 =13 xR2

From the principle of current division we find that 13 =11 . R1 / (R1+R2 + R3)
Hence V2 =13 xR2=[11.R1/(R1+R2 + R3) ].R2 =11.R1 R2/(R1+R2 +
R3)

And V2/11 = R1 R2 / (R1+R2 + R3)
~ Z21 = R1 R2 / (R1+R2 + R3)

Next we will find out Z12 and Z22 which are given by the common condition

1=0

3. Z12=V1/I2 | 11=0

By observing the network we find that the current 12 is now dividing into 13
and I4 as shown in the figure where 14 is flowing through R1 ( and R3 also
since I1 = 0 ) Hence V1 = 14 xR1 Again from the principle of current division
we find that 14 =12 . R2 / (R1+R2 + R3)

Hence V1 =14xR1=[12.R2/(R1+R2 + R3) ].R1 =12.R1R2/(R1+R2 +

R3)
And V1/I2 = R1 R2 / (R1+R2 + R3)
-~ Z12 = R1 R2 / (R1+R2 + R3)

4.We can again observe that Z22 = V2/I2 with 11=0 is the parallel combination
of R2 and (R1 + R3)

Z22 = R2 (R1 + R3) / (R1+R2 + R3)




Example 3 : Determine the Z parameters of the network shown in the figure
below.




1). We will first find out Z11 and Z21 which are given by the common
condition 12 = 0 (Output open circuited)

With this condition the circuit is redrawn as shown below.

Since the current source is there in the second loop which is equal to 11 and
12 is zero, only
current 11 flows through the right hand side resistance of 10Q and both

currents 11( both loop currents’) pass through the resistance of 5 Q as shown
in the redrawn figure .

Now the equation for loop one is given by :

vV = +5(2 a vi =20Q
1 10x 11)=20 n /i
11 d
vz = 200
11=0
Z11

Next the equation for loop two is given by :

vV = +5(2 a V2 =20Q
2 10x 11)=20 n /1
I d
vz = 200
11=0
Z21

2). Next we will find out Z12 and Z22 which are
given by the common condition 11 = 0 (input open
circuited)

With this condition the circuit is redrawn as shown below.




10 Q 10Q ¢

Now since the current I1 is zero ,the current source of I1 would no longer be
there in the output loop and it is removed as shown in the redrawn figure.
Further since input current I11= 0 ,there

would be no current in the input side 10Q and the same current 12 only flows

through common resistance of 5 Q and output side resistance of 10 Q ".With
these conditions incorporated, now

we shall rewrite the two loop equations ( for input V1 and output V2 ) to get
Z12 and Z22
Equation for loop one is given by :

V1= 512and V1/I2 = 5Q

©V1/12 |[11=0 = Z12 =5Q

And the equation for loop two is given by:
V2=10xI12+5 =15 an
X 12 12 d V2/I2 =15Q

Vv2/I2 [11=0 Z22 =

= 15Q

Finally: Z11 = ;Z12 5Q Z22 =
20Q = ; Z21 = 20Q; 15Q

Example 4: Obtain the open circuit parameters of the Bridged T network
shown in the figure below.

Open circuit parameters are same as Z parameters.

1). We will first find out Z11 and Z21 which are given by the
common condition 12 = 0 (Output open circuited)

With this condition the circuit is redrawn as shown below.

4l A
+?—£-—-< S
] 10 I 20




From the inspection of the figure in this condition it can be seen that ( since
[2 is zero ) the two resistances i.e the bridged arm of 3Q and output side
resistance of 2Q are in series and

together are in parallel with the input side resistance of 1Q. Hence the loop
equation for V1 can be written as:

v =I1x[(3+2) |1+ and = 35/6

1 5] =11 x 35/6 V1/I1

v| 12

1=0

1
Next the loop equation for V2 can be written as :

Z11 = 35/6Q

V2 =13 x2 + 11x5

But we know from the principle of current division that the
current I3 =11 x [1/(1+2+3)] =11 x 1/6 Hence V2 =11 x 1/6 X
2+ 11x5=11x16/3andV2/11=16/3Q

. Yo |12=0 = z21=16/3

2). Next we will find out Z12 and Z22 which are given
by the common condition I1 = 0 (input open circuited)
With this condition the circuit is redrawn as shown below.

From the inspection of the figure in this condition it can be
seen that ( since I1 is zero ) the two resistances i.e the
bridged arm of 3Q and input side resistance of 1Q are in
series and together are in parallel with the output side
resistance of 2Q. Further 12 =I5 + 16
Hence the loop equation for V1 can be written as :
V1 =15 x1 + 12x5
But we know from the principle of current division that the
current I5 =12 x [2/(1+2+3)] =12 x 1/3 Hence V1 = 12 x 1/3 X
l1+12x5=12x16/3andV1/I12 =16/3 Q

V1/12 |11=0 = Z12 = 16/3 Q
Next the loop equation for V2 can be written as:

V2 =16 X2 + 12x5

But we know from the principle of current division that the
currentle = 12 x [1/(1+2+3)] = 12 x (3+1)/6 = (12 x 2/3)
Hence V2 = X (2/3)x2 + 2x5 =12 x
2 19/3




= 19/3
and V2/l 2
V| I2 = Z22=19/3 Q
/FO

Example 5 : Obtain Z parameters of the following
network with a controlled current source of 0.5 I3 in the
input port.




1). We will first find out Z11 and Z21 which are given by the
common condition 12 = 0 (Output open circuited)

With this condition the circuit is redrawn as shown below.

a  h ¢ L 839 ¢ Leg g,

In this condition we shall first apply Kirchhoff’s current law to the node ‘c’:

Then 1 = 0.5I3 + I3 (I3 being the current through the resistances
of 8Qand5Q)i.eli=05I3+1z30orli=15z0rlz=11/1.5i.elz =
(2/3)I1 Now we also observe that V1 = I13(8+5) = 13. I3

Using the value of I3 = (2/3)l1 into the above
exgrg;smn we get Vi = 13(2/3)l1 and Vi/ 1 = 26/3

Vi/li [2=0=  Zu = 8.67Q




Next we also observe that V2 = 5 . I3 and substituting the above value
of I3 = (2/3)I1 into this expression for V2 we get :
V2=5.13i.,eV2=5.(2/3)I1i.eV2/11=10/3 = 3.33Q

V2/I1 [12=0 = Z21 =3.33Q
2). Next we will find out Z12 and Z22 which are given by the

common condition 11 = 0 (input open circuited)
With this condition the circuit is redrawn as shown below.

In this condition now we shall first apply Kirchhoff’s current law to the node
lel:

Then l2 = 0.513 + I3 ( 0.5.13 bein% the current through the resistance of 8 Q
and Is being the current through the resistances of 5 Q)

i.,e I2=0.5I3+13 orl2=1.513 or I3 =12/1.5i.e I3 = (2/3)l2
Now we also observe that Vi = (-0.513 x 8 + 13x5) = I3 ( it is to be noted here
carefully that - sign
is to be taken before 0.513 x8 since the current flows through the resistance
of 8 Q now in the reverse direction.
Using the value of I3 = (2/3)12 into the above
expression for V1 we get V1 = (2/3)I12 and V1/ 12 = 0.67
V1/12 ||1=0 Z12 =
o= 0.67Q

Next we also observe that V2 = 5 . I3 and substituting the above value of
I3 = (2/3)12 into this expression for V2 we get :

V2=5.13i.,eV2 ieV2/I12=10/3 =3.33Q

=5.(2/3)12

vili= z21=3.330
/10

Example 6 : Find the Y parameters of the following
type two port network and draw it’'s Y parameter
equivalent circuit in terms of the given circuit
parameters.




Applying KCL at node (a) we get




L=1,+1,

L =vY, +(V,; -V, Y,

L=V ¥y +Yp)+(-Yp)V, (D
Similarly applying KCL to node (c ) we get

l,=1s-1,
I, = VZYC “‘(Vl - Vz) YH
L=(-Ya)V, +(Yr +Yp) V, (i)

Comparing the equations (i) and (ii) above with the standard expressions
for the Y parameter equations we get :

Y =0, *}_'B" ); Y1 15— Yp
Observing the equations (i) and (ii) above we find that :

* The terms V1 (YA+ YB) and V2(Yc+YB) are the currents through the
admittances Y11 and Y22 and

The terms -YB .V2 and -YB .V1 are the dependent current sources in
the input and the output ports respectively.

These observations are reflected in the equivalent circuit shown below.

In the above figure Y11 = (YA+ YB) & Y22 = (Yc+YB) are the admittances and

Y12 .V2 = -YB .V2 & Y21 .V1 = -YB .V1 are the dependent current sources




Example 7: Find the Y parameters of the following network

j40 80
00—
-4 z,

Z, == {160
— T ©

Solution: We will solve this problem in two steps.

1. We shall first express the Z parameters of the given T network in terms of
the impedances Z1, Z2 and Z3 using the standard formulas we already know
and substitute the given values of Z1, Z2 and Z3.

Zy =2y +Zy=-j120;
2 =25 =-]160
Zn=23=-j160;
Zp=2y+Zy=-j80

2.Then convert the values of the Z parameters into Y parameters i.e
express the Y parameters in terms of Z parameters using again the
standard relationships.

o
=g
L1693 ~ 41241
: ./ 80
(—j120)( - j80)~( ~j160)*
-180 ~—j4
=—— a_L mho.
16,000 200
AT i =l iy
T Zyly ~ 24y,
1160 j
:._l__.’_#-:i mho.
16,000 100 \
e M 4

T lnlyp =22y
o T 120 it

- ho.
16000 13333 °




Example 8: Find the * h’ parameters of the network shown below. (figl2.34)

(llll

&>

v, v,
b 2 d

First let us write down the basic * h’ parameter equations and give the
definitions of the * h’ parameters.

V1 = h1l. 11 + h12.V2
I2 = h21.11 + h22.V2

hi= h21 = with V2
1 V1/I1 with V2 =0 12/11 =0
h: = h22 = with
2 V1/V2 with 11=0 12/V2 11=0

Now

1). We will first find out hil and h21 which are given by the
common condition V2 = 0 (Output short circuited)

In this condition it can be observed that the resistance RC and the current
source all become parallel with resistance RB.

For convenience let us introduce a temporary variable V as the voltage at
the node ‘0’. Then the current through the parallel combination of RB and
RC would be equal to

V s V(RB = RC)
RB RC . RB RC ,
- Kpot Rc

Then applying KCL at the node ‘o’ we get

V(R, +R
Sl g )
RB RC
V(RB+RC)
Ry R

il IR iR
(R + R:)

|

L (1-a)=




Next applying KVL at input port we get V1 = I1.RA + V and V1/
I1 = RA + V /I1 Now using the value of V we obtained above in
this expression for V1/ 11 we get

V. (1-a) Ry R-

I1 RB + RC

RA (Ré+RC)+(1—{I)E{BR
RB +RC

€

ohu,
Again from inspection of the figure above it is evident that

I, z—(a I +7{—Z-J

. (1-)L R
2 1 (RB+Rc)

Therefore
I ' 1-a)R
h21—_-_2 =—a__(_a)—3
II-V2=0 (RB+RC)
_ (aRC-l-RB)
(Ry+R.)

2). Next we will find out hi2 and h22 which are given by the
common condition 11 = 0 (Input open circuited)

Now since I1 is zero , the current source disappears and the circuit becomes
simpler as shown in the figure below.

Now applying KVL at the output port we get:

szfz(Rs*”Rc)

: ( 1
Hyp Bl
=0 RB+RC

il

Jmho.




Again under this condition:




Example 9 : Z parameters of the lattice network shown in the figure below.

o Oe—— _.'Q — 0N

First we shall redraw the given lattice network in a simpler form for easy
analysis as shown below.




We will then find out Z11 and Z21 which are given by the common
condition 12 = 0 (Output open circuited )

It can be observed that the impedances in the two arms ‘ab’ and ‘xy’ are
samei.e Z1 + Z2 and

their parallel combination is ( Z1 + Z2)/2
Hence applying KVL at the input port we get

& +Z\
Vlzjl(_li___z_]

J‘“Iﬁ
N

Next we find that

Vo=V, =V =(V, =1, Z))~(V, = 1,.Z
=1, Z, “Iszl

( Vc and VD being the potentials at points ‘c’ and ‘d’ )
It can also be observed from the simplified circuit that the currents I3 and 14

through the branches ‘ab’ and ‘xy’ are equal since the branch impedances
are same and same voltage V1 is

applied across both the branches. Hencethe current | divides equally as I3
and I4 i.e I3 = 14 = 1/2 Now substituting these values of 13 and 14 in the
expression for V2 above:

Lo\ i
1/2 ey v Z?_ _7;7,)(;(3‘ :.._2____.11

V-_’ o 3 22 _-_Z_:l
I % (7 w0 WS

As can be seen the circuit is both symmetrical and Reciprocal and hence :




Example 10: Find the transmission parameters of the following network (fig
12.51)

First let us write down the basic ABCD parameter equations and give their
definitions.

V1l = A.V2 - B.12
11 = C.V2 - D.I2

A= with =

V1i/V2 12 0
with =

C=11/V2 12 0

B = with V2

V1i/—-12 =

D = with V2

11/-12 =




1).We will then find out A and C which are given by the common
condition 12 = 0 (Output open circuited)

The resulting circuit in this condition is redrawn below.

&L 10 10
+

Applying KVL we can write down the two mesh equations and get the values
of Aand C:

V, =1, x1+(I; = 1,)2
or V, =31, -21, A1)
and 0=(I,-1,)2+1,(1+1)=41, -2,

| ; I (1))

Utilising (1) in (1),
Y, =31 -2x ] I 521 (I
Again,
V2:13x1=] I . {iv)
!71 =2mho=C
Valy oo

Dividing equation (iii) by (iv),

= =4=A

V.
211, =0




2.) Next we will find out B and D which are given by the common
condition V2 = 0 (Output short circuited)

The resulting simplified network in this condition is redrawn below.

Shorting

The voltage at the input port is gzlven by :Vi =1h
[

X1+ (h+ ) x2ie. Vi =3h+2l2 .. ... (i)
And the mesh equation for the closed mesh through ‘cd’ is given by :

O=bkxl1+(h+R)x20or3L+2h =
0 or

i =-(3/2). |2 (ii)
Using equation (ii) in the equation (i)
above we get :

Vi =-(9/2) I2 + 212 = -(5/2)l2

(o) V1 /-l2
r =B = (5/2)
And from equation (ii) above we can
directly get
lh/-12 = =
D 3/2

Hence the transmission parameters can be written in matrix notation as :

4

S

5]

28],

(SRETSRES)




Here we can seethat AD-BC=1and A#D

Hence the network is Symmetrical but not Reciprocal.




UNIT-3
FILTERS AND ATTENUATORS

Classification of
filters Filter networks

Classification of pass band and stop
band Characteristic Impedance in the
pass and stop bands
Constant ‘k’ low pass filter
Constant ‘k’ high pass filter
‘m’ derived ‘T’ section
‘m’ derived low pass & high pass filters
Band pass filter
Band Stop filter
Symmetrical Attenuators
‘T’ type attenuators
‘t’ type attenuators
Lattice attenuator
Bridged ‘T’ Attenuator
Important concepts and formulae
lllustrative problems
Previous year examination questions




INTRODUCTION:

A filter is a reactive Network which passes a desired band of frequencies called Pass
band without any attenuation and suppresses other band of frequencies called stop
band practically with full attenuation. The frequency which separates the stop and
passes bands is called the Cutoff frequency f.

An lIdeal filter would pass the desired band of frequencies without any attenuation
and suppresses the stop band of frequencies with full attenuation. Further it would
have a sharp cutoff frequency i.e. the rise and fall of the attenuation characteristic
would be very steep and almost vertical.

But practical filters would have a finite attenuation during the pass band and would
not have full attenuation in the stop band due to losses in the circuit elements.
Further the rise and fall of the attenuation characteristics would also have finite rise
and fall times.

The important properties of the filters are given below and all these properties will
be discussed in detail.

Characteristic Impedance

Frequency response or attenuation characteristic (The attenuation in Pass and
stop bands)

Cutoff frequency (the frequency of transition from Stop to Pass
band and vice versa) characteristic

Decibel and Neper:

The attenuation of a filter can be expressed in Decibels or Nepers. A Neper is
defined as the Natural logarithm of the ratio of input voltage (or current) to output
voltage (or current) when the network is properly terminated in its Characteristic
Impedance. For the two port network shown in the figure below.

. e ve|

The number of Nepers N will be :

N =log, -El—ll or log, -?— ‘
2 2

When ratio of input Power to Out power is expressed in Nepers the definition
becomes




A decibel is defined as ten times the common logarithm of the ratio of the Input
Power to the Output Power.

Therefore Decibel

2

D =10 log,, -
J

2

When the ratios of Voltages or Currents are expressed in decibels the definition of
decibel becomes:

d /,
L2 = 20} logm Z = 20 ]()g”J 72~

One Decibel = 0.115 Nepers

CLASSIFICATION OF FILTERS:

Filters are classified depending on the Frequency Characteristic and also depending
upon the impedances in the series and parallel arms (Series arm Impedance Z: and
Parallel arm impedance Z: ).

Classification based on the frequency characteristics:

Low pass filter: Is one which passes all frequencies without any attenuation up to a
cutoff frequency fc and attenuates frequencies higher than fc . The frequency band
from O to fc is called Pass band or transmission band. The frequency band beyond f.
is called attenuation band.

High pass filter : Is one which passes all frequencies without any attenuation
beyond a cutoff frequency f. and attenuates frequencies lower than fc . The
frequency band from O to fc is called attenuation band. The frequency band beyond
fc is called Pass band or transmission band.

Band Pass filter: Is one which passes all frequencies without any attenuation
between two designated frequencies fi1 & f2 and attenuates frequencies lower than f:
& higher than f. . The frequency fi is called the lower cut-off frequency and the
frequency f2 is called the upper cut-off frequency.

Band stop or elimination filter: Is one which attenuates all frequencies between two
designated frequencies fi & f2 and passés without any attenuation frequencies lower
than f1 & higher than f2 .

The frequency characteristics of all these four types of filters are shown below.




T Pass T
o

Attenuation Attenuation
B Pass
and Band % Band Band
fc — f fC e f
Low Pass Filter High Pass Filter

- Attenuation| pass Attenuation Pass | Attenuation | Pass
Band Band Band Band| Band Band

R

f, f, —f fy f

. f:
Band Pass Filter 2
a Band Elimination Filter

Classification based on the relationship between impedances in the series and
parallel arms (Series arm

Impedance Z: and Parallel arm impedance Z: ):

Constant ‘k’ filter ( Prototype filter): In this filter the series arm and shunt arm
impedances ( Z:1 and Z2)

are such that : Z, . Z; = R02 = K ( a constant ) where Ro is a real number and is
independent of frequency. It is also known the design Impedance. A filter which is
designed with this relation is called a constant ‘k’ filter or a prototype filter. They
can be further classified based on the frequency characteristics as constant ‘k ' type
low pass ,high pass etc.

FILTER NETWORKS:

Filters should have ideally zero attenuation in the pass band. This condition can be
achieved if the filter elements are dissipation less. To achieve this filters are
designed with reactive elements like Inductors and capacitors which are ideally
dissipation less. Filters are made of symmetrical T or m sections which can be
considered as combinations of L sections as shown in the figure below.




¥
| 22 [:| 22, | z,

(a) (b)
—{ {}
2Z; ]:J 27, 22, 27,
(c) (d)

Fig: Combination of L sections. (a) and (b) To form a T section. (c) and (d) to form a
m section

CLASSIFICATION OF PASS BAND AND STOP BAND:

So far we have studied briefly about the T and mn types of filters and different
characteristics of filters. Before we take up study ,analysis and design of these
filters with L and C components we have to study about Characteristic Impedance
of T and m types of filters.

CHARACTERISTIC IMPEDANCE OF T AND IN NETWORKS:

Characteristic impedance of a two port Network Zo is defined as that Imf)e_dance
which_when terminated across the output terminals of a TPNW will result in the
same Zo as the input impedance.

Defined in another way, if the image impedances at the Input and output ports of a
TPNW are identical then the Image impedance is also called the Characteristic or
Iterative Impedance.

Let us now derive the Characteristic Impedances for T and it networks from the
above definitions:

T Network: Let us consider a symmetrical T network as shown in the figure below.




> 7
< 22 Zy

L a— - "‘ - o 4

1 2

The value of the Input impedance for this network when it is terminated by Zo is given
by :

Z
B gt
n 2

Z
2
But by definition of Characteristic impedance

L., =12,

n

Therefore

Zl
3 22,442,
2 7z 422, +22,
Z, = 4 (22,+22,Z,)
2 Z,+2Z,+42Z,

Z! +22,Z, +22,Z, + 22,2, +4Z,Z,
AZ, +2Z, +2Z,)
422 =2} +42,z,

&0

4‘— +2,Z,

Thus the characteristic impedance of a symmetrical T NW is given by:




~2 '

Z..
or < TI +4,Z,

1t Network : : Let us consider a symmetrical m network as shown in the figure below:

Z4

2

by :

ZZ |rZ _+__2'£2 Z(J)
, M 22,4+ 24
in 9
z,+ 22220 07,
222_— 0

But by definition of Characteristic impedance

Zin == fU
Therefore
;
22‘3 1 _‘IF_ LZZ ZEli
N 27, + ZO
Zo = e 2




22,23 | 27,(22\Zy + ZyZ, +222))
22, +Z, (2Z, + Zy)
22,2,Zy + 2,2} +2Z3Z, + 42} 2, + 22,2
= 42,2} +27,Z,Z, +4Z,Z;

2,2 +42,7} =42,Z2
Z3(Z,+42,)=4Z,Z;
2
Zz _ 42122
2o _"W2
Z, +42,

Rearranging the above equation leads to

| zZ%
1+ 2,/4z,

0

Further simplification gives the characteristic Impedance of a t Network as
- ZIZZ
L 2
NZ,Z, +Z2 /4

Zy

But we know that

> '

_ Zy

From this we get a relationship between the characteristic Impedances of T and i
networks as :

_ 44

. —
0 ZOT

CONSTANT ‘K’ LOW PASS FILTER:
Analysis:

The figure below represents T and i networks of a low pass filter.




L2 L/2

Input I

C  Output

"L ‘}) L TC/2 C2

T section LPF A seéﬁon LPF

/

Input %
t |
Output

This filter allows lower order frequencies to pass through and stops higher order
frequencies. In both the T and n networks the total series Impedance is given by:

Z, = joL [ X, =ol]

And the shunt impedance is given by

1 j 1
Z, =——=-t 5 AL
2 joC wC - [ . mC}
Multiplying the above two equations we get
Y B IR T
2,2, —](ﬂL( w—-C]—E =R; (say)
(L/C being a real quantity )

And again by using the same two equations we get

A ~ @ LC

VA 4

But we know that for a T type two port network the characteristic Impedance Zor is
given by

Z Z.Z, |1 Z
— 4+ —
oT 152 422

Now substituting the above two values of Z1.Z> and Z:/4Z: in the above equation for
Zot we get




Or
| o’ {where 0> ——}
ZW — R0 1- e C
O ;
2
f
= R0 1

is real and the Characteristic Impedance represents the Pass band
if wZLC/4 < 1 Zor is imaginary and represents the stop band if
wZLC/4 >1

It can also be seen that:

When Zor is real f is less than fc and
When Zor is imaginary f is greater than f.

o*LC

:l{i&@ :L-}
4 Tt I

And the cut-off frequency will be at a condition when
. Hence the

LPF ( Low Pass Filter )cut-off frequency wc is given by :




co-z orf——l—
¢ JIC ¢ =JIC

From the above equation for Zor it is clear that in the Pass band ( when Zor is real )
f < fc and in the stop band ( when Zor is imaginary ) f > fc.

For a i type of Filter the characteristic impedance is given by:

— ZIL'Z _ n R\
Lo = -_7-- — = - = — =
Ll‘r . " \- ¢ \ -
R\ 1= — | 1-|
) 1| \
V L) V&
Here also in the Pass Zotis real ) and in f > fc ( so that Zor
band f < fc ( so that the stop band is

imaginary )
For the m network also

When Zor is real f is less than fc and
When Zor is imaginary f is greater than f.

O~ = or f~= L
C™ r C™_ mr
LPF cutoff vLC x«LC
frequency is
given by

Figure below shows the Zor and Zor characteristics of the LPF in
the Pass band. It can be seen that Zor increases with frequency
and ZOTl decreases with frequency in the pass band but both
are real.




Fig: Characteristic Impedance profile of T and 1 sections of a LPF

Design:

One of the most important aspects of filter design is selection of the values of
components of L and C given the values of design Impedance Ro and cutoff
frequency f.. In the previous analysis we have obtained the expressions for
these two terms as :

L
R = |=
U g

1
fe

nLe From these two expressions we can get the values of L and C in
terms of design Impedance Ro and cutoff frequency f. as




R, fc

CONSTANT ‘K’ HIGH PASS FILTER:

Analysis:

The figure below represents T and 1t sections of a high pass filter.

i
|

5
St— "o
3
h
-
d
@« Input
$000 -
=
000
=
Output

|

O=
-

Fig: T and mt sections of a constant ‘K’ high pass filter

This filter allows hiﬂ

. her order frequencies to pass through and stops lower order
frequencies. In bot

the T and 1t networks the total series Impedance is given by:

7.1 -
m And the shunt impedance is givenZdyh:fu
Hence
Yidy =Lx f(-.\I_zizF\i
Bt jaC ¢

Iz
Zy =\=-+ 4,
The Characteristic Impedance of a T section is given by: 4

1 L

Zo=\"Ta2at -

_— : . 2c2 C
Substituting the above values of Z: and Z:1Z- into this we Gef®




L 1 1
== - =R, ]l
\fc\/ 402CL .

" 40?LC

From the above equations we can see that

If 4w2LC >1 then Zor is real and the filter works in the pass band

2 . . .
f4w LC <] the s imaginary and the filter works
!n %ﬁ'e stop andnT%OeT Icultof?<‘?lreqLP/ency is given b‘)’/v
40°LC =1

]

' W f ]
1.e., D - L=
AW IL o 4n/LC

Using this value of wc in the expression for Zor we get

. ol i
1 G fe
o J 40°LC : s fz 2
Where wc = 1/4LC.
Now using the known relation Zor

. Zon = Ro~ we can get the expression for Zon as
below:
' 2 2
, KRR R
= Z(H’ (.\)2 i 0}2 :
R..J1--C -—— 1-=<
0 2 2 #
[0} )

These two characteristic Impedances of T and it sections are shown in the figure below.

Zoh

Stop Pass
band band

Y

f(Hz)




Fig: Characteristic Impedance Profiles of a HPF with T and 1 sections

Design:

Given the design Impedance Ro and the cutoff frequency fc the values of L and C
can be obtained from the following two equations derived in the analysis.

R, == 1

P NC fc:éhtm

and

Solving these two equations we get the values of L and C as:

- R0 Ce 1
41th 41tR0 fC

and

‘m’ derived filter :

Introduction:

There are two disadvantages of constant ‘k’ filter:

The attenuation does not change rapidly beyond the cutoff frequency.
Characteristic Impedance varies widely in the pass band from the desired value.

In order to overcome these two limitations a new type filter called ‘m’ derived filter
has been developed. In this configuration the filter will have a faster rate of change
of attenuation outside the pass band but it will have the same type of varying
characteristic Impedance throughout the pass band as that of the constant ‘k’ filter.
i.e. in this also it is not possible to have constant Impedance throughout the pass

band.

A ‘m’ derived filter is identical to the constant ‘k’ type filter except that

In a T section thg series multiplied by the
arm impedanceisInamn constant ‘m’ and
section the shunt arm divided by the

impedance is constant ‘m’




Where the value of ‘m’ lies between 0 to 1. Inclusion of ‘m’ in the constant ‘k’ type
filter modifies it in such a way that it improves the rate of change of attenuation but
the characteristic Impedance continues to vary the same way in the pass band.

‘m’derived ‘ T’ section:

A constant ‘k’ type ‘T" section and a ‘m’ derived filter with a suitably modified T’
section configuration are shown in the figure below.

ZJ? 2412 mZ,/2 mZ4/2
1 | e o |
— % 7 L
]
Z : [] Z%
2) (b)

Fig: (a)A constant ‘k’ type ‘T’ section (b) a ‘m’ derived filter with a suitably modified
‘T’ section

Our Objective is to find the value od Z." so as to maintain the characteristic
impedances of both the T sections Identical. It is obtained in the following steps.

The characteristic Impedance of a normal constant ‘k’ type filter with a ‘T’ section is
given by:

Similarly the characteristic Impedance of a normal constant ‘m’ derived filter with a
‘T" section is given by:

m'Z; +mZ.7!
ZOT’ 4

Since the m’ derived filter is designed to have the same characteristic Impedance
as the constant ‘k’ type filter




Z& — - m2212 ~
"l. —’_-‘—l«] sy - ———_—‘erllZz
Z(T — Z()TJ ' ‘/" ] - 4
i.e.
The value of Z2" is obtained by solving the above equation for Z>" as below:

Squaring the above equation on both sides and rearranging gives :

e mzle

Tl +&Z, = +mZ,Z,

22
mZ,Z; = —4‘—(1—m2) +2,2,
Z Z
Z)=—L(1-m)+2
4m m

The equivalent ‘T' section of the ‘m’ derived filter using the above value of Z.' is
shown in the figure below.

mZ4/2 mZ4/2
Jom—e— - ESSES
Zs/m
Z4(1—m?)
4rm

Fig: Equivalent T section of the ‘m’ derived filter

It can be seen from this figure that Z.' consists of two impedances Z./m and Zi(1-
m )/ézlm connected in series. From the above expression for Z>' it can be seen that

%_1—m )/4m should be positive to realize the impedance Z:" physically. i.e. 0< m <1.
hus it could be seen that a, ‘m’ derived filter could be obtained from a simple
constant ‘k’ t_¥pe filter b modlfé/lngllts series and shunt arms as shown in the figure
above and with values ot Z:" & Z2' given as below .

Zi'=m7Z:/2 and Z' =7Zm + Zi(1-m2)/4m

‘m’derived m section:




The same method as was used for the ‘T’ section can be used here to get the
equivalent ‘m’ derived filter with a 1t section. A constant ‘k’ type n section and a ‘m’

derived filter with a suitably modified ‘m’ section configuration are shown in the
figure below.

Z4 Z’
~— e | —

22, 27, 2Z,/m 2Z,/m

e g
—» *>

@) ' (b)

Fig: A constant ‘k’ type 1 section and a ‘m’ derived filter with a suitably modified ‘n’
section

Our Objective is to find the value od Z:" so as to maintain the characteristic
impedances of both the m sections Identical. It is obtained in the following steps.

The characteristic Impedance of a normal constant ‘k’ type filter with a ‘" section is
given by:

,‘ ZIZZ

f )

_ 1+
ZO1T T \ 4Z,

Similarly the characteristic Impedance of a normal constant ‘m’ derived filter with a
‘" section is given by:

i z

AR

m

ey Zl"
1+—————
Zoe \ 4-Z,/m

Since the ‘m’ derived filter is designed to have the same characteristic Impedance
as the constant ‘k’ type filter:




I Z
Z| =%
. | ZI er
/ 14+ —— 1+

The value of Z:' is obtained by solving the above equation for Z:" as below:

Squaring and cross multiplying both the sides of the above equation gives:

422, + Z,Z|

m

(4Z,Z, + mZ|Z)) =

Z, 4z,
Z| 2+ —=2—-mZ |=4Z 2,
m m

Z.’ — 2122
. Z, Z, mZ
e il

:4; n 4_
Z\Z,

Zy
m

Z 2
+-—LA—m
4m( )

2 Z- 4
A - - mz, 2"
1—m") (1—m~)

2 Z,4m
2 g, D20
m(l—mz) ; o

The equivalent t section of the ‘m’ derived filter using the above value of Z:’ is
shown in the figure below.




2Z5/m f ] Am 7o 2Z5/m
L

Lg

Fig: Equivalent t section of the ‘m’ derived filter

It can be seen from this figure that Z:’ consists of two impedances mZ: and [4m/(1-

m™ )] Z2 connected in parallel. Thus it could be seen that a ‘m’ derived filter could be
obtained from a simple constant ‘k’ type filter by modifying its series and shunt
arms as shown in the figure above.

‘m’ derived LPF:
Analysis:

‘m’ derived low pass filter using L and C with T and 1t sections is shown in the figure
below.

1-m=
dm
mL/2 mL/2 —
L 000 _J_ T e
mc
mL
mc/2 mcl2

(a) (b)
Fig: ‘m’ derived low pass filter with L and C in T and i sections

T section:

In the T section the tuned circuit is in Series connection and is in the shunt arm. At
resonance a series tuned circuit offers minimum resistance and since it is in the
shunt arm the filter attenuates the input signal completely at the resonance
frequency. The resonant frequency is denoted by f-

At resonance frequency the inductive reactance is equal to the capacitive
reactance.




e, weL[(1-m?)/4m] = 1/ w.C.m
Hence the resonance frequency is given by :

But we know that the cutoff frequency fc is given by fc = 1/nvLC and

hence (.Ocz = 4/LC Dividing the expression for woo2 with expression
2

for w< we get

2, 4 LC 1

- X
Wz LC(l—mz) 4 1-m?

And therefore

Which gives

It has to be observed that in the case of a LPF the cutoff frequency fc is smaller than
5he resonant frequency f- and thus ‘m’ satisfies the basic design condition 0 <'m’ <

Tt section:

In the ‘" section the tuned circuit is in parallel connection and is in the series arm.
At resonance the parallel tuned circuit offers the maximum resistance and since it is
now in series arm it offers maximum attenuation. Hence in a LPF either with ‘T’
section or ‘i’ section the resonance frequency is same and at resonance both work
as Low Pass Filters.




Hence for a t section LPF f« is given by the same value . and the
value of ‘m’ is

2
1 Je
f2

also given by the same value and again satisfies the design
condition 0 <'m’ <1

‘m’ derived HPF:

Analysis:

‘m’ derived high pass filter with L and C in ‘T’ and ‘n’ sections is shown in the figure
below.

4m L
1-m?
2CIm 2C/m — V080
. = jf—— o i
It
Lim c/m
2U/m
_4m -~ 2Um
; T 1-m? T &
(a) (b)

Fig: ‘m’ derived high pass filter with L and C in ‘T’ and ‘rt’ sections

T section:

In the T section the tuned circuit is in Series connection and is in the shunt arm. It

consists of an Inductance (L/m) in series with a capacitance C. [4m /(1-m )] At
resonance a series tuned circuit offers minimum resistance and since it is in the
shunt arm_the filter attenuates the input signal completely at the resonance
frequency. The resonant frequency is denoted by f-

At resonance frequency the inductive reactance is equal to the capacitive
reactance.




4dm

1-m?
Hence the resonance frequency is given by :

1-m? =
o2 e
4LC ®  2JLC

m

o, .C

i.e.

Jo 4nLC

But we know that the cutoff frequency f. for a HPF is given by fc = 1/4nvLC hz and
using this relation in

fmz (\:12—) fc

the above expression for f- we get

2 [ 2

| ®
m= ,’1__[20_ = [1-| 2=

\fc\l“’c

It has to be observed that in the case of a HPF the cutoff frequency f. is larger than
5he resonant frequency f- and thus ‘m’ satisfies the basic design condition 0 <'m’ <

Which gives

Tt section:

In the ‘" section the tuned circuit is in parallel connection and is in the series arm.
At resonance the parallel tuned circuit offers the maximum resistance and since it is
now in series arm it offers maximum attenuation. Hence in a LPF either with T
section or 1 section the resonance frequency is same and at resonance both work
as high Pass Filters.




e (1-m) f,

Hence f= is the same and the value
fora‘m’ given value of ‘m’ is also
> 2 | 2
[ f (e
= 1-l2=| = 1| 2=
= Vl f = ‘1 "
¢ C

and again satisfies the

given by the same value design
condition 0 <'m’ < 1.

BAND PASS FILTER:

A band pass filter can be thought of as a set of Low pass filter and
high pass filter connected in tandem with the cutoff frequencies
designed such that the HPF cutoff frequency is lower than the
cutoff frequency of the LPF. Then the HPF cutoff frequency
becomes the Lower cutoff frequency of the BPF and the LPF cutoff
frequency becomes the upper cutoff frequency of the BPF. A band
pass filter in both T and m configurations is shown in the figure
below. It is a combination of one (or two) series tuned
circuit/s placed in series Path and one (or two) Parallel
tuned circuit/s placed in the shunt path. The tuned circuits
will have a resonant frequency. At resonance frequency, a
series tuned circuit offers lowest resistance and a parallel
tuned circuit offers maximum resistance. Thus the circuit
allows passage of signals within the pass band of frequencies
around the resonant frequency and stops passage of all other
signals on either side of the pass band.

Input L, C,  Output Input 2L, =G U,

. Outonst
7C Jutpns

T-Configuration n-Configuration

Fig: Band Pass filter In T and it configurations




The design of a band pass filter involves the selection of the
values of L1,C1, L2 and C2 given the required band of frequencies
i.e lower cutoff frequency fl1 (Hz) ,the upper cutoff frequency f2
(Hz)and the design resistance RO(ohms). These design expressions
are given below. Once these values are determined, the circuit as
configured above can be realized in either T or i configurations.




C1 = (f—f1) / 4m Fara

L1 = Ro/m ( f2—f1) Henrys fif2Ro ds
Henrys
Fara
ds

BAND ELIMINATION (STOP) FILTER:

A band stop filter can be thought of as a set of Low pass filter and high pass filter
connected in tandem with the cutoff frequencies designed such that the HPF cutoff
frequency is higher than the cutoff frequency of the LPF. Then the LPF cutoff
frequency becomes the Lower cutoff frequency of the BSF and the HPF cutoff
frequency becomes the upper cutoff frequency of the BSF. A band stop filter in both
T and mn configurations is shown in the figure below. It is @ combination of one (or
two) series tuned circuit/s placed in Shunt Path and one (or two) Parallel tuned
circuit/s placed in the series path. The tuned circuits will have a resonant
frequency. At resonance frequency, a series tuned circuit offers lowest resistance
and a parallel tuned circuit offers maximum resistance. Thus the circuit does not
allow passage of signals within the stop band of frequencies around the resonant
frequency and allows passage of all other signals on either side of the stop band.

Ly

Mge

‘k\;, 1].1 ‘—’| 2"')_ g_
8|

By bl i |

T-Configuration of BSF r-Configuration of BSF

Fig: Band Stop Filter In T and 1 configurations

The design of a Band Stop Filter involves the selection of the values of Li1,Ci, L2 and
Cz , given the required band of frequencies i.e. lower cutoff frequency fi (Hz) ,the
upper cutoff frequency f: (Hz)and the design resistance Ro(ohms). These design
expressions are given below. Once these values are determined, the circuit as
configured above can be realized in either T or t configurations.

P RS Shiobhe-r

L2 = RO/ an*( f2—-f1) ?ﬁfm(: f2-f1) /nt







SYMMETRICAL ATTENUATORS:

Symmetrical Two port Networks are defined as networks in which the Input and
output ports can be interchanged without changing the input/output
Voltages/currents. Hence Symmetrical attenuators are designed such that both the
pairs of terminals are matched to the same characteristic Resistance Ro.This is
achieved by keeping both the input side and output side resistors same. The
attenuation is measured in nepers or decibels. The decibel is defined as:

DB = 20 logio I1/l2 . Defining N = I/l then
DB = 20 logwo N and

N = Antilog DB/20

Normally Attenuators re required to be designed with a given level of attenuation in
Decibels. So first the given level of attenuation in decibels is to be converted from
decibels into N. There are different types of attenuators and we will explain the
design of the following four important types of Attenuators.

The design of the Attenuators involves finding of the Values of the resistors for the
given type of configuration when the required level of attenuation either in DB or as
a ratio of I: & Iz i.e N and the Characteristic Impedance (Resistance Ro) are specified.

Symmetrical T attenuator:

The configuration of a symmetrical T type Attenuator terminated in its characteristic
Resistance Ro is shown in the figure below. As can be seen the attenuator is
symmetrical with both the input side and output side resistors being the same. (R:
and R1)

Fig: Symmetrical T type Attenuator

Writing the current equation for loop 2




__L _ Rl o R2 +R0
[, R,
I
I-‘ =N
But 2
N = R, +R, +R
Therefore R

We know that the impedance looking into the terminals 1 &2 when the network is
terminated in its Resistance Ro is equal to Ro itself and therefore

£ Rz(Ro +R1)
R, +R, +Ry

Ry, =R,

Using the above expression for N into the above expression for Ro we get

Ry +R,

=R, +
Bo=Ry+

Solving for R1 we get

_ Ry(N-1)
3 N+1

Substituting the above value of R: into the expression for N and solving for R:we get

~ 2R,N
N2 ]

R,

Symmetrical t attenuator:

The configuration of a symmetrical it type Attenuator terminated in its characteristic
Resistance Ro is shown in the figure below. As can be seen the attenuator is
symmetrical with both the input side and output side resistors being the same. (R2
and R2)




i1 AL

R1 V2 3'2
R
; ga R, ?%
v
H T

2

Fig: Symmetrical it type Attenuator

Writing the equation for current at Node 3 we get

Rl RZ RO Rl

Solving the above equation for Vi/V2 we get

But Vi/V2 =11/l =N

_ R¢R,+RR;+RR,
We KNow that the dance looking into the terminals 1 &2 when the network
is terminated in it istance Ro is equal to Ro itself and therefore
R,R
Rz R] & 0*™2
R,+R,

Ro = R.R
_RoRy
R,+R,+ R, +R,
_ Ry[RijRj +R R, +RyR, ]
Rz(RO + R2)+(R1RO + R1R2 + RORZ)




Using the above final expression for N into the above expression for Ro we get

- BEN
R,(R,+R,)+NR,R,

Solving for R2 we get

N+I]
N -1

R, =Ro(

Substituting the above value of R: in to the expression for N and solving for R1 we
get

Symmetrical Bridged T attenuator:

The next symmetrical attenuator which is commonly used is a Symmetrical Bridged
T attenuator.The configuration of a symmetrical i type Attenuator terminated in its
characteristic Resistance Ro is shown in the figure below. As can be seen the
attenuator is symmetrical with both the input side and output side resistors being
the same. (R:1 and R1)

>

2

Fig: Symmetrical Bridged T attenuator

First we have to get an expression for the characteristic resistance Ro in terms of the
Network resistances Ri:, R2 and Rs

Since the Bridged T type Attenuator shown in the figure above is symmetrical
Network, the characteristic Resistance Ro is given by




Ry = \/Rfsc:Roc

Rsc and Roc are the short circuit resistance and open circuit resistance of the Bridged
T type Attenuator as seen from the terminals 1and 2 shown in the figure above.

Thus
R\R,
R, R, + -
R\\‘,“ — ,,ﬁfﬁ___.
R,+R,+—-2
: R, +R,

R,(2R,R, +R?)
" RyR,+R;R, +R} +2R R,

_ R,(R, +R3)
Roc=Re* SR IR,

_ 2RR; +RR;+RI+RR,
‘ 2R, +R,

And

_ R,[2R,R, +R?)
Ro 2R, +R,

Usually in the design of a Bridged T type Attenuator R: is chosen to be equal to Ro
and the resistances Rz and Rs only are made variable and are chosen so as to get
the specified values of Ro and N. Hence substituting Ro in place of R: into the above
equation for Ro we get

_ [R,2R.R, +R2)
Ro = YT 2R, ¥R,

q= 2R R,R; + RéRz?\
R 2R, +R,

Solving the above equation for Ro we get




Ry = yR;R;

Referring to the figure above and writing the equations for current at nodes 3 &5
and setting R1 = Ro we get

At Node 3

VZ[LJ,LQ_}_&_YL e
RO RO R3 R3 RO

Eliminating V3 from the above two equations we get

2R;+Ry R,
Vi __RRR;  R,(2R,+Ry)
v, 1 R,

—+
R; R,(2R,+R,)

But V1/V2 = I/l = N and so we get

y o (2R, +RJ2R; +Ro)-RyR,
2R,R, +R} +R,R;

Substituting Ro2 = R2Rs and simplifying we get

R
0
Since R02 = R:R; the above equation can also be written as
R
N=1+—-2

R,




And from the above two equations we can get the values of Rs and Rz as
Rz = Ro ( N-l) and

R = Ro /( N-1)

A Bridged T type Attenuator is more economical and convenient for design and use
as only two resistances have to be changed /varied to realize a particular value of Ro
and N where as in ‘T’ and ‘iU’ type attenuators 3 resistances have to be changed.

Symmetrical Lattice attenuator:

The configuration of a Symmetrical Lattice attenuator is shown in the figure (a)
below. For ease of analysis and understanding it is redrawn and shown as Bridge
Network in figure (b)

Fig: (a) Symmetrical Lattice attenuator (b) Redrawn as a Bridge Network

Since the lattice Attenuator shown in the figure above is also a symmetrical Network
we can use the

Ry = \/RscRoc
same relation to get the values of R: and R:.

From figure (b) above we have
R,R R,R;
L™ 52 4 1182
R, +R, R, +R,;

_ 2RjR,
R, +R,

Zoc = (R, ;Rz)




But we know that Ro= VZSC'ZOC

Substituting the above values values of Zsc and Zoc in theabove expression for Ro we
get

2R Rz R| +R2) — -

R\R;
Ry = {Zsc Zoc \/RI+R2 2

Referring to the figure above and writing the e uatlons for current at nodes 3 &
4 taking node 2 as reference we have at node

Vi-Vy MmN N,
RO R] R,

And at node 4:

Noting that V3—Va = V2 the above two equations will become

Ve=Vy Mo VeuV1

R R. ﬁ
\A +V3(L _l_j v
RO Rl R2 Rl

11 Vv
.__Y.g_ - V4£-—-—-+_._.] Rl
Subtfr(éctmg t eRéeconH equation from the first equation and again replacing (Vs-Va)

by V> we get

2V, 11 1 1}
R, Z[RI RZJ ‘(RI R,




v,| 2RiR; +-Rg.l.<‘--_+_f_.w_m] . v[&_&}

RoR|R, RiR;
Thus
A = = 1 . (2R1R2+R0R1+R2Ro)
Vr: RO R2 _Rl

And using the already established relation R02 = R:1R: in the above expression for N
we get

N = 2JRR, +R, +R, _ ( R1+JR_2.)Z

1+ L 1+—=L
N = R, R,
- N =
TR K
R, Or in terms of Ro and R R,
From which we get
N -1
1=R0( ] R2=RQ(N+1.)
N+1 And N-1




Important concepts and formulae :

Characteristic Impedance of a T Network :

Characteristic Impedance of a m Network :

2,2,

Zy.
lezz +272/4

Relationship between the characteristic Impedances of T and 1 networks :

_ 44

ZO-n'
ZOT

Constant K type LPF:

The following points are to be noted for drawing the
configuration :

The L and C values are same for both T and 1
configurations.

’,%ngdérﬁgetg? /é’uﬂ“ﬁé%”%é@@"%ﬁd”/gfhe ﬁ%%n%r i it gd e UfRls é%
assage of signal i e required ban t comes as o ement /n then
Conﬁgurat/on and as two elements each of L/2 in the T Configuration.

] hanLnP J e%f’ae E%paatc/g‘av”ﬁ%ﬁué’h%s 0 1% 3] ﬁt:% a(an & :%’5%”%‘? glisr

unt sa In the u:re
on?hg %rzeo n%gru@a ?an_e Conﬁguratl n n s two efements ea oé}‘sC/Z

Then using the following formulae for L and C the final circuit diagram can be
drawn




0
L Lea—
RO= E nfcl
1 =
fc_n«/L—ﬁ/ nRO 'fc

Constant K type HPF :

The following points are to be noted here while drawing the
configuration:

The L and C values are same for both T and it
configurations.

. For a HPF the capacitance comes in the series arm (capacitance offers low

impedance at high frequencies and low impedance is required in
Series arm for passage of signal in the required band)). It comes
as C when it is one element as in i configuration and as 2C when
it is divided as two in series in the T configuration.

on z epgggcges?%%e of s:gﬂu)enc’ﬁ?earré%uf} d yg,gg,gf)aq ecc!?né%qé’ér

inT c,',%?ggurat/on arnd co[nes as 2L when it is divided into two elements in

y For a HPF thec ﬁld%c;;ance comes_in the hunt arm é/nductance %ﬁrgﬁé%f}
en i

é)_ara In'T configuratio
! hen using the following formulae for L and C the final circuit diagram can be
drawn
R
R, = L B 1 A C=—~Rl——
¢ ¢ 4nlIC drfc 4R, f

‘m’ derived filter
A ‘m’ derived filter is identical to the constant ‘k’ type filter
except that

In a T section the series arm impedance is multiplied by the
constant ‘m’ and

. In a m section the shunt arm impedance is divided by the constant ‘m’

0 Then tt]_% oth r arm resistances are de r ved s ?ﬁ' t%maln alp the characteristic impedance
same. The net impedance values are shown'i e figure below .




mZ4/2 mZ4l2 l I
—{ 1 T {1 ° -
g
[ ] am_ 7., ] 2Z5/m
LJ Z1(1=m?) L J {—m?

. -

S e

T configuration of m derived filter 1 configuration of m derived filter

o For a m derived LPF :

o For a m derived High Pass Filter :

2

e |
J ‘ )
m= i]._' f’L - ll_ __f.;n_

\ f \! -

0 Using the above points and formulae along with the rules
mentioned in the normal K type filters m derived filters with L and C
can be designed can be designed.

C1 = ( f2—f1) / 4n fif2Ro C2
Band pass filter TRl
E' Farads
nr Farads
ys
Henrys

The following points are to be noted here while
drawing the configuration:

o The L and C values are same for both T and 1
configurations.

0 For a BPF the series tuned circuit with L and C
comes in the series arm (series




tuned circuit offers low impedance at the
resonant frequency and low impedance is
required in Series arm for passage of signal in
the required band




around the resonant frequency). It comes as C when it is one
element as in t configuration and as 2C when it is divided as two
in series in the T configuration.

o For a BPF the shunt tuned circuit with L and C comes in the shunt
arm (shunt tuned circuit with L and C offers high impedance at
resonant frequency and high impedance is required in Shunt arm
for passage of signal around the resonant frequency). It comes
as L when it is one element as in T configuration and comes as
2L when it is divided into two elements in parallel as in mn
configuration

Band Stop filter

°x |

L. Henrys Farads

N

Henrys Farads

The following points are to be noted here while
drawing the configuration:

o The L and C values are same for both T and it
configurations.

o For a BSF the shunt tuned circuit with L and C
comes in the series arm (shunt tuned circuit

offers maximum impedance at the resonant
frequency and

maximum impedance is required in Series
arm for stopping of signal in the required
band around the resonant frequency).

o For a BSF the series tuned circuit with L and C
comes in the shunt arm (series tuned circuit with
L and C offers minimum impedance at resonant
frequency and low impedance is required in
Shunt arm for stopping of signal around the
resonant frequency).

Attenuators:

0  Symmetrical T type attenuators:

Ro(N-1) R, = 2RoN
N+1 N? -1

R1 =
and




attenuators:

Symmetrical it type Attenuators:

and

Symmetrical Bridged T network




Rz = Ro /( N-1)
Rs = Ro ( N-l) and
I

Symmetrical Lattice Attenuators:

-r. [Nl _n (N+1
R L

Previous year Question papers:

R0O9 May11

1. Explain T - type attenuator and also design a T - type attenuator tol\%ive an
attenuation of 60dB and to work in a line of 500Q impedance. (R09 May 11)

2. Design a m - derived high pass filter with a cut - off frequency of 10KHz;
design impedance of

5Q and m = 0.4. (R09 May 11)

3. Explain the lattice attenuator and also design a lattice attenuator to
(hF?(\)/S I?/I chalrla)cterlstlc impedance of 800Q and attenuation of 20 dB.
ay

4. What is a constant - K low pass filter, derive its characteristics impedance.
(RO9 May 11)

5. Explain i - type attenuator and also design it to give 20db
ﬁ/lttenlula)tlon and to have characteristic impedance of 100Q. (R09
ay

6. A low pass 1 section filter consists of an inductance of 25 mH in series arm and
two capacitors of 0.2uF in shunt arms. Calculate the cut - off frequency, design
impedance, attenuation at 5 KHz and phase shift at 2 KHz. Also find the
characteristic impedance at 2 KHz. (R09 May 11)

7. Explain Bridged - T attenuator and also design it with an attenuation of 20
dB and terminated in a load of 500Q. (RO9 May 11)

RO9 May 12

8. Explain m-derived low-pass T-section and nt section in detail and the
necessary
Design procedure.

9. An attenuator is composed of symmetrical T-section having series arm each
of 420 ohms and shunt arm of 740 ohms. Derive expression for and calculate
the characteristic impedance of this network and attenuation per section.
Draw the circuit diagram for symmetrical T-type attenuator.

10. (a) Explain symmetrical it type attenuator with necessary equations in detail.




(b) Design a symmetrical it type attenuator to give 20 db
attenuation and to have a characteristic impedance of 200
ohms.Derive the expression for symmetrical T and n filter networks.




11.What is an Attenuator? Explain diferent types of symmetrical attenuators
indetail?

12. (a)Derive the necessary expressions for m-derived low pass filter.
(b) Derive the necessary expression for m-derived high pass filter.

13.(a)Design a T-type attenuator to have an attenuatjon of 40db and to
work between source impedance of 400 ohms and load impedance of

900 ohms.

(b) Design a _-type attenuator to have an attenuation of 25db
and to work between Source impedance of 600 ohms and load
impedance of 1000 ohms.

lllustrative Examples:

Ex.1: Design a constant K type low pass filter having a cutoff frequency of
2.5 kHz and a design resistance (Impedance ) of 700 Q in both T and n
configurations.

Solution: From the given data we have
fc = 2.5 khz = 2500 Hz and Ro = 700 Q

The basic configuration of a LPF in T and 1t configurations is shown below.

L2= L)2=
44564 mH  44.564 mH L =89.127 mH
—/TI—4— T — © l—fmT
(52
=
= C=0182pF  C23== 0,091 uF G2 z
0- — ). (e 0

(a) T configuration LPF (b) m configuration LPF
For a LPF we have the design values of L and C in terms of fc and Ro as :
L = Ro/ m. fc and
C = 1/m.Ro .fc
and using them we get :

L=Ro/T.
fc = 700/ 1.2500 Henrys = 89.127 mH ; L/2 = 44.56 mH and




C =1/n.Ro
fe = 1/ nx700x2500 Farads = 0.182 pF ; C/2 = 0.091 uF




These values are shown substituted in the figure above.

Ex.2: Design a proto type (it is same as constant K type) high pass filter
having a cutoff frequency of 12 kHz and a design resistance (Impedance) of
500 Q in both T and 1t configurations.

Solution: From the given data we have

fc =12 khz = 12000 Hz and Ro = 500 Q

The basic configuration of a HPF in T and mt configurations is shown below:

2C=0.0264 uF 2C=0.0264 pF C=0.0132 uF
I Il 11 ¢
o | 3 oo 1l

& 6.632 6.632
L=3316mH 2L mH 2L H

° 00 0

(a) T configuration HPF (b) m Configuration HPF

For a HPF ( High Pass Filter ) we have the design values of L and C in terms of
fc and Ro as :

L =Ro/4mn. fc and
C = 1/4n.Ro .fc

and using them we get :

L = Ro/4n. =500/4rn.12000 = 3.316 ; 2L = 6.632 mH
fe Henrys mH and

C=1/4n.Ro = 1/4 mx500x12000 = 0.0132 ; 2C = 0.0264
fe Farads MF MF

These values are shown substituted in the figure above:

Ex.3: Design a proto type Band Pass Filter in both T and nt
configurations having cutoff frequencies of 3000 Hz and 6000 Hz and
Nominal Characteristic Impedance of 600 Q.




Solution: From the given data we have :

f2 = 6000 Hz, f1 = 3000 Hz and Ro = 600 Q

L,/2 0044uF  0044mH L2 63.662mH  0.022 pF
- o r—| - o
1
1 Tyl ]
]
L, =7.958 mH C,=0.177 uF K 2= b= y
I o g; | 0.0885 uF  15915mH I 0.0885 uF

o0— -0 [ -0

Fig: (a) BPF in T configuration (b) BPF in it configuration

For a BPF (Band Pass Filter) we have the design values of L1, Ci1, L2 and C2

in terms of fi1, f2

and
Ro as:

= /n(f2-"f1)
L1 Ro henrys
= .(f2-f1)/41n henr

L2 Ro fif2 ys

c =(f2-f1)/4mRo Farad
1 faf2 S

C =1/nRo(f2-f1)

» Farads

And using them we get :

Series arm inductance Li = Ro/ 1 (f2 - f1) henrys = 600/ n (6000 - 3000) H
63.662 mH

and L1/2 = 63.662/2 =
31.83 mH

Shunt arm inductance L2=Ro(f2-f1)/4n
fif2 henrys = 7.96 mH

= 600(6000 - 3000)/
4 m x 3000 x 6000 H

and 2Lz =2 x7.96 mH
= 15.92 mH




Next :

Series arm capacitance Ci (f2 - f1) / 4 1t Ro f1f2

Farads




(6000 - 3000)/ 4 m x 600 x 3000 x 6000

F =0.022 pF
= 2x0.022 = 0.044
and 2C1 pF
Shunt arm =1 /1 Ro (f2 - f1)
capacitance Cz Farads
= 1/nx 600 x (6000 -3000) F =0.177
HF
C2/2 =0.177/2 = 0.0885
and KF
Next:
The resonant
frequency fo of the BPF is given by fo = v fafz = ¥ 3000 x 6000 = 4242.640 Hz

Ex.4: Design a constant K#/Pe Band Stop Filter in both T and 1t
configurations having cutoff frequencies of 2000 Hz & 5000 Hz and design
Resistance of 600 Q.

Solution: From the given data we have :
f2 = 5000 Hz, f1 = 2000 Hz and Ro = 600 Q

The basic configuration of a BSF in both T and it configurations is shown in
the figure below.

L,/2=28648mH  L,/2=28.648 mH .
[ ST N

p L y L
____{}____ I

]l
2C,=0088F g - 2C;=0088 yF
1592 mH

o—4

Input

C,=0.159 yF

c —l- ) | -I:- (:2/2

Fig: (a) BSF in T configuration (b) BSF in it configuration




For a BSF (Band Stop Filter) we have the design values of in terms of f1, f2
L1, Ci, Lz and C2 and

Ro as:
I




R (f2-f1)/nf1f2
L1 =0 henrys

R / 4n (f2 -
L2 =0 fi1) henrys
C =1/4nRo(f2 Farad
1 —fl) S
c = (f2-f1) /mRof1f2
» Farads

Series arm inductance L1 = Ro (f2 - f1) / it f1 f2) henrys = 600 (5000 - 2000) /
(m x 2000 x5000) H =

57.32 mH
and Li/2 =57.32 /2 = 28.66 mH
Shunt arm inductance L2=Ro /4 n
(f2 - f1) henrys
= 600 /4 nm (5000 - 2000) H = 15.92
mH
Next :
Series arm
capacitance Ci1 = 1 /4 nRo(f2-"f1) Farads
=1/4mnx600x (5000 -2000)F =
0.044 pF
2C
and 1 =2x0.044 = 0.088 pF
Shunt arm capacitance
C2 = (f2 - f1) / m Ro f1 f2 Farads
= (5000 - 2000) / (m x 600 x 2000 x  0.159
5000) F = KF

Ex. 5 : Design a m derived Low Pass Filter in both T and n configurations
having design Resistance of 600 Q and to pass signals upto 1Khz with infinite
attenuation frequency being 1.2 khz.

Solution: From the given data we have :

Fcer = 1000 Hz, fine = 1200 Hz and Ro = 600 Q




The basic configuration of a m derived LPF in both T and 1t configurations is
shown below :




mL = 88.06 mH

mL/2 mL/2

o —4— T : ' —o
44.03 mH j_ 44.03 mH
mC = 5
0.352 pF mC 1-m” - mL

1- m2 —2— an
~—rL=49948H =0.176 uF =0.074 uF

° A —0 0

AQ

Fig: m derived LPF (a) In T configuration ( b) In
configuration

From the theory of m derived LPF we have :

=V ; 00/1200)2 = 0.553
For the proto type r%gF F_\@Ldesign values of L and C in terms of fc and Ro are

given by : fz
L =Ro/ m. fc and
C =
1/m.Ro .fc
and using them we get :
= 500/ n.1000

Series arm inductance L = Ro / n fc Henrys = 159.24 mH and
Shunt arm capacitance C = 1/n = 1/ mx500x1000
Ro fc Farads = 0.637 UF
The values of the elements of T section of m derived LPF
are :

= (0.553 x 159.24) /
mL/2 2 mH = 44.03 mH
mC = 0.553 x 0.637 pyF = 0.352 pF
[(1-m2)/4m 1L =[(1-0.553 2)/4x0.553 ] x 159.24 mH
= 49.948 mH

And the values of the elements of n section of m
derived LPF are :

= (0.553 x 0.637) /2 = 0.176
mC/2 MF KF




= 88.06

mL =0.553 x 159.24 mH mH
[(1-m2)/4m = [(1-0.553 2)/4x0.553 1x = 0.074
]1C 0.637 uF KF

The required m derived LPF in T and n configurations is obtained by
substituting these values in the basic configuration of m derived LPF in T and
n configurations shown above.

Ex. 6 : Design a m derived High Pass Filter in both T and n configurations
having design Resistance of 600 Q and to pass signals beyond 4Khz with
infinite attenuation frequency being 3.6 khz.

Solution: From the given data we have :

Fevpr = 4000 Hz, finr = 3600 Hz and Ro = 600 Q

The basic configuration of a m derived High Pass Filter in both T and n
configurations is shown in the figure below.

4m
Z
1-m2 % [ 4m
L
E:ﬁ -
27, 2L % 2Z, 2L T
Input % i 3 - Output

Fig: m derived High Pass Filter in (a) T configuration (b) mt
configuration

From the theory of m derived HPF we have

\/—1-(3600/40[00-)——0 436

) v2)

m= fl

|




For the proto type HPF the design values of L and C and Ro are given
in terms of fc by :

L = Ro /4 m. fc

and

C = 1/4n.Ro fc

and using them we get :

= 600/ 41t x 4000 = 11.94 mH

Shunt arm inductance L = Ro / 1t fc Henrys and
Series arm capacitance C = 1/4n = 1/ 4n x 600 x 4000 Farads =
Ro fc 0.033 pF
The values of the elements of T section of m derived
HPF are :
L/m = 11.94/0.436 mH = 27.39 mH

= (2 x0.033)/
2C/m 0.436 pF = 0.151 pF
[4m /(1-m2) 1] =1[4x0.436/(1-0.436 2)] x 11.94
C mH = 0.071 mH

And the values of the elements of  section of m
derived LPF are :

=2X
2L/m 11.94/0.436 mH =54.78 mH
= 0.033/0.436
C/m Vig =0.076 MF
[4m /(1-m2) ] =1[4x0.436/(1-0.436 2)] x 11.94
L mH = 25.7 mH

The required m derived HPF in T and n configurations is obtained by
substituting these values in the basic configuration of m derived LPF in T and
1 configurations shown above.

Ex.7: Design a T type symmetrical attenuator with an attenuation of 60 db
to work in a line of of 500 Q Impedance.

The basic configuration of a T type attenuator is shown in the figure below:

R Ry = A SO0
— AT
’1 1'1 1'2 I?
| By

= R“ H"J =




The attenuation N of an attenuator is given by N = antilog (D / 20)
= antilog (60 / 20) = 1000
Each of the series arm Resistance Ri of the symmetrical T attenuator is given by
Ri =Ro.(N-1)/(N+1) = =499 Q
500(1000 -1)/(1000 + 1)
Shunt arm resistor Rz is given by :

Rz =Ro.2N/(N2-1) =500x(2 =1Q
x 1000 ) /(10002 - 1)

These values are substituted in the figure.

Ex.8: Design a 11 type symmetrical attenuator with an
attenuation of 20 db to work in a line of 500 Q
Characteristic Impedance.

The basic configuration of a nn type attenuator is shown in the
figure below:

Ry = 43850

=3 |

The attenuation N of an attenuator is given by N = antilog (D

/ 20)
= antilog (20 / 20) =
10
Series arm Resistance R1 of the symmetrical  attenuator is
given by :
R R - (N2-1)/2N =100(102 -1)/(2 x = 495
1 =o 10) 0

Each of the shunt arm resistor Rz is
given by :




R R- (N+1)/(N-1) =100 x (10+1)/ 122.2
2 =0 (10-1) (9]
These values are substituted in the

figure.




Ex.9: Design symmetrical bridged T attenuator with an attenuation of 20
db and terminated into a load of 500 Q.

The basic configuration of a symmetrical bridged T attenuator is shown in
the figure below:

4500 Q

e
l R\ R
AN AAN
500 Q [ 500 Q
w5000 Ra S 555550 g
e <T 500 Q

From the given data we have D = 20 dB and Ro = 500 Q
The attenuation N of an attenuator is given by N = antilog (D / 20)

= antilog (20 / 20) = 10

In a symmetrical bridged T attenuator the two series resistances (R1) are
always designed to be equal to Ro and then the values of R2 and Rs are

given by :

Ro/(N- =500/ (10- 55.5

Rz =1) 1) Q
= Ro (N- 4500
Rs 1) = 500 (10-1) Q

These values are substituted in the figure.

Ex.10: Design a symmetrical lattice attenuator with an attenuation of
20 db and having a characteristic Impedance of 800 Q.

The basic configuration of a symmetrical lattice attenuator is shown in the
figure below:




RA
654.545 Q

977.777Q L r\"\977‘777sz

R 4 R

654.545 Q

P

From the given data we have D = 20 dB and Ro = 500 Q

The attenuation N of an attenuator is given by N = antilog (D / 20)

= antilog (20 / 20) = 10

The series and diagonal arm resistances Ri1 and Rz in a lattice attenuator are

given by:

= Ro ( N-1) / = 800 (10-1) / 654.5
Ri1 (N+1) 10+1) Q

= Ro ( N+1)/ = 800 (10+1) / 977.7
Rz (N-1) (10-1) Q

These values are substituted in the
figure.
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UNIT-4
LOCUS DIAGRAMS & RESONANCE

Locus Diagrams with variation of various parameters
Series RC and RL circuits

Parallel RLC circuits

Resonance

Series and Parallel circuits

Concept of Bandwidth and Quality factor




Locus Diagrams with variation of various parameters:

Introduction: In AC electrical circuits the magnitude and phase of the
current vector depends upon the values of R,L&C when the applied voltage
and frequency are kept constant. The path traced by the terminus (tip) of
the current vector when the parameters R,L&C are varied is called the
current Locus diagram . Locus diagrams are useful in studying and
understanding the behavior of the RLC circuits when one of these
parameters is varied keeping voltage and frequency constant.

In this unit,Locus diagrams_ are develpﬂed and explained for series RC,RL
circuits and Parallel LC circuits along with their internal resistances when the
parameters R,L and C are varied.

The term circle diagram identifies locus plots that are either circular or
semicircular. The defining equations of such circle diagrams are also derived
in this unit for series RC and RL diagrams.

In both series RC,RL circuits and parallel LC circuits resistances are taken to
be in series with L and C to h|ghl|?ht the fact that all practical L and C
components will have at least a small value of internal resistance.

Series RL circuit with varying Resistance R:

Refer to the series RL circuit shown in the figure (a) below with constant XL
and varying R. The

current I lags Behind, the applied wolta ;{ by, a phase apgle ©= tan _(XL/R) far a
R ValuS 37, ROAT SodeONGE HATR I S eI R 55, <80, s Dathng
90 . When R is increased from zero to inﬁ@ity the current gradually reduces from V/XL
to 0 and phase angle also reduces from 90 " to
B a2 BRI OB RS A I Fh filP-of h g iarrent vector traces the path
Fig(a): Series RL circuit with Fig(b): Locus of current

vector IL with variation of R Varying, Resistance R

Fig(a): Series RL circuit with Fig(b): Locus of
Varying Resistance R current vector IL
with variation of

R

The related equations are:
IL=V/ZSin©=XL/Z © and ©6=R/Z
Therefo = (V/XL) Sin ©

re IL




For constant V and XL the above expression for IL is the
polar equation of a circle with diameter (V/XL) as shown in
the figure above.

Circle equation for the RL circuit: (with fixed reactance and
variable Resistance):




The X and Y coordinates of the current

IL are
IX =1L
Sin © Iy = IL Cos ©
From the relations given above and earlier
we get
= (V/Z) >
IX( XL/Z) =VX/zZ - (1)
and (R/Z) =VR/Z™ = (2)
Squaring and adding the above two
equations we get
Ix2 + IY2 = V2(XL2+R2)/Z4 = =
2_2 4 2.2
V'zZz7)z Viiz- (3)

and substituting this in the above
From equation (1) above we have 22 =v XL/Ix equation (3)

we get :
=V /(VXL/IX)=

IX 2 + 1Y 2 (V/XL) IX Or
5 — (V/XL) IX
IX“+1¥? =0
Adding (V/2X ) to both sides ,the above equation can be written as

— V/2XL 2+ ly 2 =

2 — (4)

Equation (4) above represents a circle with a radius of (V/2XL) and with it’s
coordinates of the centre as (V/2XL, 0)

Series RC circuit with varying Resistance R:

Refer to the series RC circuit shown in the figure (a) below with constant XC
and varying R. The

SISO ARS8 R 0 ARRIR VARG YT LRSS 90 B=de XFEIIORAL

€ current IS maxXimum equa

_ 0 :
V/XC and lies along the negative | axis with phase 90". WhenRis
angle equal to increased
from zero to infinity the current gradually - to 0 and phase angle
reduces from V/Xc also
5%% o rf“c’g‘s ‘-%Re E’h SRR R RN NIAH st R M Y TR

ga |ve

Circle equation for the RC circuit: (with fixed reactance and variable
Resistance):

In the same way as we got for the Series RL circuit with varying resistance
we can get the circle
equation for an RC circuit with varying resistance as :

[IX + V/2XC 12+ v = (V/zxc)2




whose coordinates of the centre are
V/2XC —

/

v r\) /?R R=0 |
...

Fig: Series RC
circuit with
Varying
Resistance R

( V/2XC, 0) and radius equal to

J
f)/“ |

)

X

o —— A

R =

— VX, ——>

Fig: Locus of current
vector Ic

with variation of R




Series RL circuit with varying Reactance Xi:

VSt erRE EhrEh AL HE BRI L AT Bl oY ﬁgséaa”ﬁgﬁga@d
2 SEHRLRRE VMR WSS R 2o Ve S e AR e Y DEN xis i
phase angle equal to 0 . When XL is increased from zero to ||bﬁn|ty the current
gradually reduces from V/R to 0 and phase angle increases from 0

can be seen romé m ure the tf:R of the\gurrent vgcg r.tra %sesr the

g%t ofé semicircle”with its er-along the +ve V axis an to1ts righ
% W_,)_(.t:o
L
e
[V I— > E
k R
AVAYAY
VIR
¥ ‘%'XL 8
:
L X, = 0 o D

Fig(a): Series RL circuit with varying XL  Fig(b) : Locus of current
vector IL with variation of XL

Series RC circuit with varying Reactance Xc:

SRIPUARS RENTALCAHA SR IR BRAIR RaBE 0 by ATpfeRE 3Rl R
95 t?)nwexcén sfeoer ?h%'v nevglhl#reeﬂt |sas as>r<]|cr)nun r'%”&/l&b?a b& Pes an 8
the V axis with phase angle equal to 0 . When XC |s mcreased from zero to

mﬁnlty the currept gradually reduces from V/R to 0 and phase angle

'ncr'}ee%% ec 8'Fntr% esOEf%)eo Qtaf%\ o?%nsgr%élergpe W it h%é'r%terteer% Sn'cj”%h%fﬂ}%
axis but now on eft side.
;r ;
XCZO
I. R
T >~ N\N— Aly
- VIR
Vv ( V) = x }
l - D Xa= o

Fig(a): Series RC circuit with varying XC Fig(b): Locus of current
vector IC with variation of XC




Parallel LC circuits:

Parallel LC circuit along with its internal resistances as shown in the figures
below is considered here for drawing the locus diagrams. As can be seen,
there are two branch currents IC and IL along with the total current I. Locus
diagrams of the current IL or IC (depending on which arm is varied)and the
total current | are drawn by varying RL, RC, XL and XC one by one.

Varying XL:

Fig(a): parallel LC circuit with Internal Resistances RL and RC in
series with L (Variable) and C (fixed) respectively.

The current IC through the capacitor is constant §1nce RC and C are fixed and it
(

I th It t I =t X /R h in the fi
(%?.d'?heecdpreﬁg?t%erguorhot%é)y an angle © an /R ) as shown in the figure

INETI0GE phiase VAEROMS ppliad Titaga v/ SWRENREM FGLEY Foml Sert e idtinty 72

IS
BRI LSS B0 R VoRAGESBY B gAlno the voltege by 907, In between, the

6 =tan, (X/R)) Tr\mleli\ocus of the current vector | is a semicircle with a diameter of

[ n(_%the ual’to V/RL. . . S
Note that this is the same locuys what we got ear“er for the series RL circuit with
XL varying except that here V is shown hofFizontally.

Now, to get the locus of the total current vector Ol we have to add vectorially
the currents IC and IL . We know that to get the sum of two vectors
geometrically we have to place one of the vectors staring point (we will take
varying amplitude vector IL)at the tip of the other vector (we will take
constant amplitude vector IC)and then join the start of fixed vector IC to the
end of varying vector IL. Using this principle we can get the locus of the total
current vector Ol by shifting the IL semicircle starting point O to the end of
current vector OIC keeping the two

diameters a[allel. The resulting semicircle ICIBT shown in the figure in

dotted lines isfthe locus of the total current vector Ol.
TR W ——T
Xe 1
‘ |
\ ,
\ / /— T circLE
AV Ru
Xy = oo N | K=o /
s /\/@c . i "
e e ™ B N
@) e TSR] L o

> IL CIRCLE




Fig (b): Locus of current vector | in Parallel LC circuit when XL is
varied from 0 to «

Varying Xc:

T

'@

Fig.(a) parallel LC circuit with Internal Resistances RL and RcC in
series with L (fixed) and C (Variable) respectively.

The current IL through the inductor is constant since RL and L are fixed and it
lags the voltage

vector OV by an angle © = tan'1 (X /RL) as shown in tLhe ﬁlgure (b). The current | through the c
capacitance is the vector. Olc . It's amplitude is maxjmum and | to V/RC
W?Pen S?C P Zero a It is..in.phase HR L{ é aé) |ed voltage V.ecw}awen (C. IS
Increased from zero to infiity it’s amplitude decreases to zero and phase will bé
leading the voltage by 90 . In between, the phase angle will
be leading the voltage V by an angle © = tan ~ (X /R ). The locus of the current vector | is a

C C C C
semicircle with a diameter of length equal to V/RC as shown in the figure
below. Note that this

is the same |locus what we got earlier for the series RC circuit with XC varying
except that here V is shown horizontally.

Now, to get the locus of the total current vector Ol we have to add vectorially
the currents IC and IL . We know that to get the sum of two vectors
geometrically we have to place one of the vectors staring point (we will take
varying amplitude vector IC)at the tip of the other vector (we will take
constant amplitude vector IL) and then join the start of the fixed vector IL to
the end of varying vector IC. Using this principle we can get the locus of the
total current vector Ol by shifting the IC semicircle starting point O to the end
of current vector OIL keeping the two

diameters parallel. The resulting semicircle ILIBT shown in the figure in
dotted lines is the locus of the total current vector Ol.




Fig(b) : Locus of current vector | in Parallel LC circuit when XC is
varied from 0 to «

Varying RL:

The current IC through the capacitor is constant smfe RC and C are fixed and

Iead voIta or OV by an an (X /R ) as.shown in the
9n Ft be |shrengxwrr?3r%nﬁt§n Rt %%Lcetvehnen Lis z\é%t?t 6F It's

En ¢ ” B‘Ec'?é’aqs'é‘g th3dRa% i?¥59|9 ph"é’?é”\}vf%h T SISARES VRS 1R BUINEL AL

-1
angle W|II be Iagglng the voltage V by an angle © = tan = (X /R ). The locus of
the current vector

ILis a sem|C|rcIe with a diameter of length equal to V/RL. Note that this is the
same locus what we %ot earller for the Series RL circuit with R varying except
that here V is shown horizontally.




Fig.(a) parallel LC circuit with Internal Resistances RL (Variable) and
RC (fixed) in series with L and C respectively.

Now, to get the locus of the total current vector Ol we have to add vectorially
the currents IC and IL . We know that to get the sum of two vectors
geometrically we have to place one of the vectors staring point (we will take
varying amplitude vector IL)at the tip of the other vector (we will take
constant amplitude vector IC)and then join the start of fixed vector IC to the
end of varying vector IL. Using this principle we can get the locus of the total

current vector Ol by shifting the IL semicircle starting point O to the end of
current vector OIC keeping the two

iameters parallel. The resulting semicircle ICIBT shown in the figure in
d fined e th ftRe tots g

otted lines is the locus o e total current vector Ol.
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Fig(b) : Locus of current vector | in Parallel LC circuit when RL is
varied from 0 to «




Varying RcC:

~f

@

Fig.(a) parallel LC circuit with Internal Resistances RL (fixed) and RC
(Variable) in series with L and C respectively.

The current IL through the inductor is constant since RL and L are fixed and it
lags the voltage
vector OV by an angle & = tan’

C
capacitance is the vector OIC . It's amplitude is maximum and equal to V/XC
when RC is zero and

1 (XL/R ) as shownLin tEe figure (b). The current | through the

. . . 0 .
5 Rosg il beidsading. the vol'age by, 9ha- #VRRN £ GrispRSLE 35t AT Z8Emd
voltage V. In between, the

phase angle will be leading the voltage V by an angle 6 = tan_1 (X /R ). The locus oféhe current C

vector IC is a semicircle with a diameter of length equal to V/XC as shown in
the figure below. Note that this is the same locus what we got earlier for the
series RC circuit with R varying except that here V is shown horizontally.

Now, to get the locus of the total current vector Ol we have to add vectorially
the currents IC and IL . We know that to get the sum of two vectors
geometrically we have to place one of the vectors staring point (we will take
varying amplitude vector IC)at the tip of the other vector (we will take
constant amplitude vector IL) and then join the start of the fixed vector IL to
the end of varying vector IC. Using this principle we can get the locus of the
total current vector Ol by shifting the IC semicircle starting point O to the end
of current vector OIL keeping the two

diameters parallel. The resulting semicircle ILIBT shown in the figure in
dotted lines is the locus of the total current vector Ol.
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Fig(b) : Locus of current vector | in Parallel LC circuit when RC is
varied from 0 to «

Resonance :

Series RLC circuit:

The impedance of the series RLC circuit shown in the figure below and
the current | through the circuit are given by :

Z=R+ jwL +1 /juC =R - 1l/w

+j(wL C)
| =Vs/Z
R L (
AAA r56 [
‘-[ V,, - |- V, |- vl -

Fig: Series RLC circuit
The circuit is said to be in resonance when the Inductive reactance is

equal to the Capacitive reactance. i.e. XL = XC or wL = 1/wC. (i.e.
Imaginary of the impedance is zero) The frequency

at which the resonance occurs is called resonant frequency. In the resonant
condition when XL




=XC theey cancel wijth each other ince they are in phase ngosmon 1800 out
of éa ) an net#mpe ance of the |rCU|t is purel reS|st|v In this condition
th njitudes R %es across the Capacitance and the Inductance are
also eq al to each other but again smce they are o




opposite polarit¥ they cancel with each other and the entire applied voltage
appears across the Resistance alone.

Solving for the resonant frequencR}/ from the aboLve c]c-)/ndci:tié)nfol_f
esonance : wL = 1/wC 2nfrL =
1/2nfrC

#2 = 1/4r°LC and fr = 1/2nVLC

In a series RLC circuit, resonance may be produced by varying Lor C at a
fixed frequency or by varying frequency at fixed L and C.

Reactances, Impedance and Resistance of a Series RLC circuit as a
function of frequency: From the expressions for the Inductive and
capacitive reactances we can see that when the frequency is zero,
capacitance acts as an open circuit and Inductance as a short circuit.
Similarly when the frequency is infinity inductance acts as an open circuit
and the capacitance acts as a short circuit. The variation of Inductive and
capacitive reactances along with Resistance R and the Total Impedance are
shown plotted in the figure below.

As can be seen, when the frequency increases from zero to e Inductive

reactance XL (directly proportional to w) increases from zero to « and

Capacitive reactance XC (inversely proportional

to w) decreases from _co to zero. Whereas, the Impedance decreases from w

to Pure
Resistance R as the frequency increases from zero to fr ( as capacitive
reactance reduces from
_o and becomes equal to Inductive reactance ) and then increases from

R to « as the frequency increases from fr to o (as inductive reactance
increases from its value at resonant

frequency to o« )

0

Fig : Reactan%ge?ﬁ’nd Impedance plots of a Series RLC circuit

P
o

Phase angle of a Series RLC circuit as a f:unctionﬁ frequency:

00

capacitive Inductive

Qno
CAY

i Tags v,
Ileads V, /leads V, s




Fig : Phase plot of a Series RLC circuit

The following points can be seen from the Phase angle plot shown in the
figure above:

* At frequencies below the resonant frequency capacitive reactance
is_higher than the inductive reactance and hence the phase angle
of the current leads the voltage.

As frequ%ncy increases from zero to fr the phase angle changes
« from -90 to zero. At frequencies above the resonant frequency

iInductive reactance 'f higher than the capacitive reactance and
hence the phase angle of the current lags the voltage.

* As frequency increases from fr and app6c5aches o the phase angle
increases from zero and approaches 90

Band width of a Series RLC circuit:

The band width of a circuit is defined as the Range of frequencies between
which the output power is half of or 3 db less than the output power at the
resonant frequency.These frequencies are called the cutoff frequencies, 3db
points or half power points. But when we consider the output voltage or
current, the range of frequencies between which the output voltage or
current falls to 0.707 times of the value at the resonant frequency is called
the Bandwidth BW. This is because voltage/current are related to power by a
factor of v/2 and when we are consider +/2 times less it becomes 0.707. But
still these frequencies are called as cutoff frequencies, 3db points or half
power points. The lower end frequency is called lower cutoff frequency
and the higher end frequency is called upper cutoff frequency.

Fig: Plot showing the cutoff frequencies and Bandwidth of a
series RLC circuit

Derivation of an expression for the BW of a series RLC circuit:
We know that BW = f2 - f1 Hz

If the current at points P1 and P2 are 2) times that of | max ( current at the

0.707 (1/ resonant
then the Impedance of the circuit at points 2 R 2 times

frequency) Pl1and P2is (i.e. the

impedance at fr) _ R2 + (1/wiC -

But Impedance at point P1 is 2> and equating this to

given by: Z wil) 2R




we get : (1/w1C) - wiL =R ------ (1)

Similarly Impedance at point P2 is R™+ (w2l
given by: Z= 1l/w2C

2 R we w2L - (1/w2C) =

get: R e (2)

Equating the above equations (1) and (2)
we get:

1/w1C - Wik = w2L - 1/w2C
Llwi+ 1/C[( w1+ w2)/
Rearranging we get w2)

wWiw2]

)2

and equating
this to

Wiw2 =
1/LC




But we already know that for a series RLC circuit the resonant frequency is

i 2
given by wr’ =
1/LC
Therefore: wlw2 = wr2 ---- (3) and 1/C = wrzL ...... (4)

Next adding the above equations (1) and (2) we get:
1/w1C - wll+ w2L - 1/w2C = 2R
(W2 - W)L + (1/w1C - 1/w2C) = 2R
(w2 - wl)L + 1/C[(w2 - wl)/wlw2) =2R ------ (5)

Using the values of w w2 and 1/C from equations (3) and (4) above into
equation ﬁ‘)?

we get: (w2 wl)L + wrZL [(wW2 - w1)/ wrz) = 2R

i.e. ZLéwz wl) = i.e. (w2 - wl) = R/Land (f2 -
fi)  =R2nL = - (6)

Or finally Band W|dth 237\9! =R2mL

Since fr lies in the centre of the lower and upper cutoff frequencies f1 and f2
using the above equation (6) we can get:

fi =fr - R/4nL------ (8)
f
2 =fr + R/4nL------ (9)
Further by dividing the equation (6) on both sides we get another
above by fr important
relation : (f2 - f1) / fr = R/2nt fr or BW [fr=R12u frL ------ (10)

L Here an |mportant property of g. ure of merit is
a coil i.e. Q factor de r?ecras the ratio of
the reactance to the resistance

of a coil.

Q=2nfrL/R------
Now using the relation (11) we can rewrite the relation (10) as

Q = fr / BW-——-

Quality factor of a series RLC circuit:

The quality factor of a series RLC circuit is defined as:
Q = Reactive power in Inductor (or Capacitor) at
resonance / Average power at Resonance

. , 2
Reactive power in Inductor at resonance = | XL

Reactive power in Capacitor at resonance = I2X2C

Average power at Resonance =I"R 2

Here, e oW 1 EXRIEISA] I0,IPE (O 12 (0% 25 el
it gets cancs yring Ee simplifica | on.

ThereforeQ = XL/I R=1 Xc/

1%R
Q XL/R

ie.= = wrl/R (1)
Q Xc/R

Oor = = 1/wrRC e (2)

From these two relations we can also define Q factor as :




Q = Inductive (or Capacitive ) reactance at resonance /
Resistance
Substituting the value of wr = 1/VLC in the expressions (1)
or (2) for Q above we can get the value of Q in terms of R,
L,C as below.
Q = (1/YLC)L/R =(1/R) (VL/C)

Selectivity:

Selectivity of a series RLC circuit indicates how well the given
circuit responds to a given resonant frequency and how well
it rejects all other frequencies. i.e. the selectivity is directly
proportional to Q factor. A circuit with a good selectivity (or a
high Q factor) will have maximum gain at the resonant
frequency and will have minimum gain at other frequencies
.e. it will have very low band width. This is illustrated in the
figure below.




e

7 Frequency

Fig: Effect of quality factor on bandwidthVoltage Magnification at
resonance:

At resonance the voltages across the Inductance and capacitance are much
larger than the applied voltage in a_series RLC circuit _and this is called
voltage magnification at Resonance. The voltage magnification is equal to
the Q factor of the circuit. This is proven below.

If we take the voltage applied to the circuit as V and the current through the
circuit at resonance as I then

The voltage across the Vi = IX, = (V/R)
inductance L is: wr L and

The voltage across the Vc = IXc = V/R wr
capacitance C is: C

But we know that the Q of a series RLC circuit = wr L/ R
= 1/R wr C Using these relations in the expressions for
VL and VC given above we get

VL=VQ andVc=VQ

The ratio of voltage across the Inductor or capacitor at resonance to the
applied voltage in a series RLC circuit is called Voltage magnification and

is given by
Magnification = Q =VL/V orVc/V

Important points In Series RLC circuit at resonant frequency :

The impedance of the circuit becomes purely resistive and
minimum i.e Z = R The current in the circuit becomes
®* maximum

The magnitudes of the capacitive Reactance and Inductive Reactance
become equal The voltage across the Capacitor becomes equal to the
voltage across the Inductor at resonance and is Q times higher than
the voltage across the resistor

Bandwidth and Q factor of a Parallel RLC circuit:

Parallel RLC circuit is shown in the figure below. For finding out the BW and Q
factor of a parallel RLC circuit, since it is easier we will work with
Admittance , Conductance and Susceptance instead of Impedance
,Resistance and Reactance like in series RLC circuit.




Fig: Parallel RLC circuit
Then we have the Y=1/Z = 1/R + 1/jwL + jwC = l/w
relation: 1R +j(wC - L)

For the parallel RLC circuit also, at resonance, the imaginary part of the
Admittance is zero and

hence the frequency at which is given wr - 1l/wrL=0.

resonance occurs by: C From this
wrC =

we get : 1/wrL and wr = 1/ LC

which is the same value for wr as what we got for th
series RLC circuit.

At resonance when the imaginary part of the admittance is zero the
admittance becomes minimum.( i.e Impedance becomes maximum as
against Impedance becoming minimum in series RLC circuit ) i.e. Current
becomes minimum in the parallel RLC circuit at resonance ( as against
current becoming maximum in series RLC circuit) and increases on either
side of the resonant frequency as shown in the figure below.
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Fig: Variation of Impedance and Current with frequency in a Parallel
RLC circuit




Here also the BW of the circuit is given by BW = f2-f1 where f2 and f1 are still
called the upper and lower cut off frequencies but they are 3db higher cutoff
frequencies since we notice that at




these cutoff frequencies the amplitude of the current is v/2 times higher than
that of the amplitude of current at the resonant frequency.

The BW is computed here also on the same lines as we did for the series RLC
circuit:

If the current at points P1 and P2 is V2 (3db) times higher than that of

Imin( current at the

resonant frequency) then the admittance of the circuit at points P1 and Pz is
also 2 times higher than the admittance at fr)

V1R? + (il -

But amplitude of admittance at point P1 is 2 and
given by: Y = wlC) equating
thisto 2 /R we get
l/wi- -
L wlC = 1/R - (1) 2 2
Similarly amplitude of admittance at point P2 is = 1R+ - 1/w2L)
given by: Y (w2C and
equating this
to 2 /R we get
w2- e
C 1/w2L = 1/R - (2)
Equati LHS of (1) and (2) and further
ng simplifying we get
l/wl - wiC= -
L w2C 1/w2L
o 1/wil + 1/w2L = wl1C + w2C
1/L [(wl + w2)/ wiw2] = (w1l + w2)C
1/L J
C = Wlw?2

Next adding tf'(e equations (1) and (2) above and further
simplifying we get

- 1/w2L = 2/R
(W2 - WIC + VL [(w2 - w1)/ wiw2] == 2/R
Substituting the value of wiw?2
= 1/LC
(w " w1l)C+ LC/L ~
2 [(w2 wl)] = 2/R
—wl)C+C -~
(W2 [(w2 wl)] = 2/R
2C ~wl) =
[(w2 ] 2/R
Or - =

[(w2  w1)] 1/RC
From which we get the band width BW = f2-f1

= 1/2m RC
Dividing both sides by fr we (f2-f1)/ fr = 1/2m
get: frRC  memee- (1)

Quality factor of a Parallel RLC circuit:

The quality factor of a Parallel RLC circuit is defined as:

Q = Reactive power in Inductor (or Capacitor) at resonance /
Av‘(/ar/g(ge power at Resonance Reactive power in Inductor at resonance
= V2/AL




Reactive power in Capacitor at
resonance = V2/Xc Average power at
Resonance = Vz/R

: : 2 2 : : L
R R S X RS RO AR S Thes AR RLL ardull'agd Ege gutt)
ca&celled duri'ng the simplification. Therefore Q = (V /XL) / (V /R) =

Y g(c)/(v /R)

R/ XL = R /wr
i.e. = L - (1)
Q
Or = R/ XC=wrRC e (2)
From these two relations we can also define Q
factor as :

Q = Resistance /Inductive (or Capacitive ) reactance at resonance
Substituting the value of wr = 1/VLC in the expressions (1) or (2) for Q
above we can get the value of Q in terms of R, L,C as below.

Q = (1/VLC ) RC = R (VC/L)
Further using the relation Q = wr RC ( equation 2 above ) in the earlier
equation (1) we got in
BW viz. (f-f )/ f = 1/2n f RC we get : (f-f)/f=1/Qor Q=f/(f-f)=f/BW
21 r r 21 r r 21
i.e. In Parallel RLC circuit also the Q factor is inversely
proportional to the BW.

r




Admittance, Conductance and Susceptance curves for a Parallel
RLC circuit as a function of frequency :

* The effect of varying the frequency on the Admittance, Conductance
and Susceptance of a parallel circuit is shown in the figure below.

* Inductive susceptance BL is given by BL = - 1/wL. It is inversel
proportional to the frequency w and'is shown in the in the fourt?"/n
quadrant since it is negative.

* (Capacitive susceptance BC is given by BC = wC. It is directly
proportional to the frequency w and is shown in the in the first
quadrant as OP .It is positive and linear. Net susceptance B = BC - BL

* and is represented by the curve JK. As can be seen it is zero at the
resonant frequency fr

¢ The conductance G = 1/R and is constant

* The total admittance Y and the total current I are minimum at the
resonant frequency as shown by the curve VW

Admittance
|

"/J e M

Fig: Conductance,Susceptance and Admittance plots of a Parallel
RLC circuit

Current magnification in a Parallel RLC circuit:

Just as voltage magnification takes place across the capacitance and

Inductance at the resonant frequency in a series RLC circuit , current

magnification takes place in the currents through the capacitance and

Lnolluctance at the resonant frequency in a Parallel RLC circuit. This is shown
elow.

Voltage across the Resistance = V = IR

Current through the Inductance at resonancelL=V/wrL=IR/wrL =1.

R/wrL=1Q

Similarly

Current through the Capacitance at resonance IC = V/ (1/wr C) = IR / (1/wr

C)=(RwrC)=1Q




From which we notice that the quality factor Q = IL/ 1. or IC / I and that the
current through the inductance and the capacitance increases by Q times
that of the current through the resistor at resonance. .




Important points In Parallel RLC circuit at resonant frequency :

The impedance of the circuit becomes resistive and

maximum i.e Z = R The current in the circuit becomes
®* minimum

The magnitudes of the capacitive Reactance and Inductive Reactance
become equal The current through the Capacitor becomes equal and
opposite to the current through the Inductor at resonance and is Q
times higher than the current through the resistor




UNIT-5
DC MACHINES

®* Principle of operation of DC Machines
* EMF Equation
* Types of Generators

®* Magnetization and load characteristics of DC
Generators

* DC Motors

* Types of DC motors

®* Characteristics of DC Motors

®* Speed control of DC shunt motor
* Flux and Armature

control methods ®* Losses
and efficiency

®* Swinburne’s test
* Important concepts and

Formulae * lllustrative
Examples

Previous years question papers




Introduction:

A DC generator is a rotating machine which converts mechanical energy into DC
electrical energy. It requires a prime mover like a Diesel engine, wind turbine or a
steam turbine to rotate the DC generator. An EMF is induced in a DC Generator
when there is a relative motion between a Magnetic field and a set of electrical
conductors. The EMF induced is called a dynamically induced EMF or motional EMF .
Normally the magnetic field is stationary and is obtained from stationary field coils
placed on the Stator poles and the conductors are placed on a rotating shaft called
Rotor. The basic constructional features of a DC generator and a DC Motor are
same, and the same DC machine can work either as a DC generator or a DC motor.

The conversion of Mechanical energy into Electrical energy in DC generator is based
on the principle of electromagnetic Induction. According to Faradays laws of
Electromagnetic induction, whenever a conductor moves in a magnetic field a
dynamically induced EMF is produced across the conductor. When the terminals of
the conductor are connected to an electrical load the induced EMF enables a current
flow through the load. Thus a mechanical energy in the form of a rotational motion
given to a conductor is converted into Electrical energy. The EMF induced in a single
conductor is very small. Hence a large set of conductors are used in practical
generators and such a set of conductors placed on a rotating round shaft is called
an armature.

Important parts and constructional features of a DC Generator:

% Brushes
Field pole and

o field core
Nameplate @ 4=

Yoke

Armature
o
C v
ommutator

(G

= End bell
Frame =

Fig: A simplified diagram of a dc machine:




Major parts of a DC generator:

+« Main frame or Yoke

+ Poles

o Armature

« Commutator

+ Brushes ,bearings and shaft

The physical structure of the machine consists of two parts: the stator and the rotor.

The stationary part consists of the main frame (yoke), and the pole pieces, which
project inward and provide a path for the magnetic flux. The ends of the pole pieces
that are near the rotor spread out over the rotor surface to distribute its flux evenly
over the rotor surface. These ends are called the pole shoes. The exposed surface of
a pole shoe is called a pole face, and the distance between the pole face and the
rotor is the air gap.

There are two principal windings on a dc machine:

+ The armature windings: the windings in which a voltage is induced (rotor)

» The field windings: the windings that produce the main magnetic flux (stator)
Because the armature winding is located on the rotor, a dc machine’s rotor is mostly
called an armature. The terminal characteristic of a DC Machine is a plot of the

output parameters of the Machine against each other. For a DC Generator the
output quantities are the Terminal Voltage and the Line (Load) current.

Principle of operation of DC Machines:

Let us consider a sinEIe_ turn of coil ABCD mounted on a cylindrical shaft and
rotated in an anticlockwise direction at constant angular velocity of ‘w* rad/sec
within a uniform magnetic field of flux density B

webers/mtrs2 as shown in the figure below .
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Let | be the length and b be the breadth of the rectangular coil in meters. According
to Faradays law the emf induced in a conductor is given by e = N.d@/dt where e is
the induced emf , N is the numberof conductors , @ is the flux linkage and t is the
time. The flux linkage @ is given by : @ = B.area of the

coil.cos wt = B.l.b.Cos wt

Since we are considering only one conductor the induced emf in the conductor is
given by:

e = -dg/dt = -d(B.l.b.Cos wt)/dt = B.l.b.w .Sin wt = Em Sin wt where Em
= B.l.b.w

As can be seen from the above equation for induced emf the voltage in a given
gene&ator can be increased by either increasing the flux density ‘B’ or the rotational
speed 'w’ .

The induced emf ‘e’at any position of the coil as a function of time ‘t’ as derived
above is then given b];{ : @ = Em Sin wt where Em = B.l.b.w. As can be seen d9/dt
i.e rate of change of flux linkage is minimum (=0) when the coil is at perpendicular

position to the flux lines and hence the induced voltage e is also minimum (=0) . We

will call this as position ® = 0" at the instant of say t = 0 sec. And d@/dt is
maximum when the coil is at parallel position to the flux lines and hence the
induced voltage e is also maximum( = Em = B.l.b.w) and this position will then be

© = 90 .When © = 180 the induced emf is again zero and when 6 = 2700 the
emf induced is again maximum but now it would be negative. When ©

= 3600 the coil is back to the original position and the induced emf is again equal to
zero. For the two pole generator shown in the figure one complete cycle of change
takes place in one rotation of the coil. A plot of the induced emf ‘e’ as function of
coil position © is an alternating voltage as shown in the figure below.
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Fig: emf induced in a single turn generator in one full revolution

When the two terminals of the coil are connected to an external load (resistance in
this case) through two separate rings (called slip rings) mounted on the armature
current flows through the resistance and the current also would be sinusoidal.

The current flowing through the external load can be made unidirectional by
replacing the two slip rings with two split rings as shown in the figure below.




Insulation

Sepments

Fig.7.8 Split ring

(a) M)

One slip ring is split into two equal segments P and Q which are insulated from each
other and the armature shaft. The two coils AB and CD are connected to the two
segments P and Q .Two fixed (stationary) brushes B1 and B2 sliding along these two
split rings will be collecting the current from the generator. During the first half of
the revolution segment P is positive and current flows along ABPLMQCD through
brush B1 which is positive and into brush B2 into segment Q which is negative. Next
during the other half cycle, the location of the segments AB & CD will reverse along
with the respective segments P and Q . Now conductor CD and segment Q are
positive and current flows along DCQLMPBA through the Brush B1 which is again
positive and into the brush B2 which is again negative as shown in the figure below.

E
Fig.7.8 Split Ring & uni 180° 360" Q
directional e.m.f. (d)

In each half revolution the positions of the conductors AB & CD and the segments P
&Q reverse but the brushes B1&B2 are stationary and continue to collect current
from the Positive side and deliver current to the Negative side respectively. Hence
the voltage across the load will be a unipolar voltage as shown in the waveform
above. The changeover of brushes Bi&B2 between segments P &Q takes place
when the voltage is minimum so as to avoid or minimize the arcing between the
split segments. In practical generators there will be more number of conductors and
also more number of Pole pairs and hence more number of split segments are
required and such a set of more number of split segments is called commutator.




EMF Equation:

Now we can derive a detailed expression for the exact induced emf in a
generator in terms of all the following DC Machine parameters.

@ The flux from a pole (webers)
Z The total number of conductors on the armature
a The number of parallel paths

In a practical machine all the conductors are not connected in series.
They are divided into groups of parallel conductors and then all the
groups are connected in series to get higher voltage. In each group
there are ‘@’ conductors in parallel and hence there are ‘a’ parallel
current paths and each parallel path will have Z/a conductors in series.

N The Speed of rotation (RPM)
® The speed (Radians/sec)

P The number of poles

Now consider one conductor on the armature. As this conductor
makes one complete revolution it cuts PG webers of flux.

Since the induced emf in a conductor is its rate of cutting of flux lines
( Rate of change of Flux linkage ) the emf ‘e’ induced in such a single
conductor is equal to

e = PG/ Time for one revolution in seconds = PG/(60/N) = NPOQ/60
volts

There are Z/a conductors in series in each parallel path.
=~ the total induced emf ‘E’ = (Z/a) NPG/60 = ( NPG Z )/ (a. 60)
EA = (9 ZN/60).( P/a)

The armature conductors are generally connected in two methods. Viz. Lap
winding and Wave winding.

In Lap wound machines the number of parallel ‘E’

paths ‘a’ = P = (O ZN/60)
In Wave wound machines the number of parallel (O ZN/60).
paths ‘a’ = 2 ‘E’ = (P/2)

In general the emf induced in a DC machine can be represented as EA = Ka.
9.N

where Ka = ZP/60.a




Sometimes it is convenient to express the emf induced in terms of the
gngular rotation w (Rad/sec) and then the expression for emf
ecomes:

EA = (9 ZN/60).( P/a) = (ZP/a). 9. N/60 = (ZP/.a). @. (w/2n) =
(ZP/2mna).F.w = Ka. 9.w (since N/60 RPS = 2nt. N/60 Radians /sec
= w Radians /sec and .- N/60 = w/2nt) Where Ka is the generalized
constant for the DC machine’s armature and is given by :

Ka = (ZP/2ma)

Where @ is the flux/per (Webers), N is the speed of
pole in the machine the rotation (RPM) w is & Ka are
angular speed constants depending on the
(Radians/sec) and K machine

parameters.




And thus finally EA = Ka. 9. w and general, the induced voltage in any DC machine
Vy,e Cafn Sa’y In depend on the following

three factors:

1

The flux & in the machine
2. The angular speed of rotation W and
3. A constant representing the construction of the machine. (ZP/2ma)

(i.e. the number of conductors ‘Z’, the number of poles ‘P’ and the
number of parallel paths ‘a’” along with the other constant ‘2m’)

Important Aspects of DC Generators:

The terminal characteristic of a DC Machine is a plot of the output quantities
of the Machine against each other. For a DC Generator the output quantities
are the Terminal Voltage and the Line (Load) current.

* The various types of Generators differ in their terminal characteristics
(Voltage-Current ) and therefore to the application to which they are suited.

* The DC Generators are compared by their Voltages, Power ratings, their
efficiencies and Voltage

regulation. Voltage Regulation (VR) is defined by the equation: VR = [(Vnl
Vfl) / Vfl 1.100 % B

Where Vnl is the No load terminal voltage and Vfl is the Full load
terminal voltage. It is a rough measure of the Generator’'s Voltage-
Current Characteristic. A positive voltage regulation means a drooping
characteristic and a negative regulation means a rising characteristic.

Since the speed of the prime movers affects the Generator voltage and
prime movers can have varying speed characteristics, The voltage
regulation and speed characteristics of the Generator are always
compared assuming that the Prime mover’s speed is

always constant.

Magnetization characteristics of DC Generators:

No load or Open circuit magnetization characteristic of any DC Machine is a plot of
the Field flux versus the magnetizing current. Since measurement of field flux is
difficult we use the relation for the emf

induced in a DC machine EA = K. @.N from which we can see that the induced
voltage is proportional to the Flux in the machine when the speed is maintained
constant. Hence we conduct a test on the given DC machine to obtain data on the
induced voltage as a function of the field current.

The diagram of the test setup required to obtain the above data is shown in the
figure below.

Ammeter

Prime
mover




Fig: Test setup with a DC machine to obtain the No load magnetization
Characteristic




The prime mover gives the required mechanical energy to the DC Machine and it
can be a small Diesel engine. The rheostat connected between the DC Input and the
field winding is used to adjust and get the required field current. The field current is
initially set to Zero and the Armature volatage is measured. Then the field current is
gradually increased and the corresponding values of Armature voltage are
measured until the output voltage saturates. Next the field current is brought back
to zero gradually and the corresponding Armature voltages are measured at a few
points. The corresponding data on Armature voltage is plotted against field current
and is shown in the figure below.

E 4

— |IF

Fig: No load magnetization curve (or OCC) of a DC Machine ( Plot of
rmature Volatage Vs.field current )

Though the field current is zero we get a small value of Armature voltage as seen at
point 1 due to the residual magnetism present in the field coil. Subsequently
armature voltage increases with field current upto some point 3 and then the rate of
rise decreses. Finally at poin 4 field flux gets saturated and hence the emf also gets
saturated. The plot of armature voltage vs.field current is not same during the field
current reduction as that during the field current increase and this is due to the
property of magnetic hysteresis in the Ferro magnetic materials. In the return path
the induced volatage at zero field current is higher than that during the field current
increase. This is due to the combined effect of Hysterisis and the residual
magnetism.

Different Types of DC Generators and their Terminal ( or Load )
Characteristics:

The DC generators are classified according to the manner in which the field flux is
produced. Let us consider the following important types of DC Generators and their
characteristics along with their equivalent circuits.

The following notation is used uniformly in all the following circuits/characteristics:

+ Vr = Generator’s Terminal Voltage
« I. = Load or line current

» Ia = Armature current

« Ea = Armature voltage

+ Ra = Armature Resistance

+ I = Field current




Ve
RF

Field voltage
Field Resistance




Separately Excited Generator: In this type the field flux is derived from a
separate power source which is independent of the Generator. The equivalent circuit
of such a machine along with the governing equations is shown in the figure below.

Ve= Ey- iRy
./
Ir= g
Fig: Equivalent circuit of a separately excited DC Generator
The terminal characteristic of this type of Generators is a plot of VT vs. IL for a
constant speed w and the governing equations are :

» The Load or line current = The armature

. IL current 1A

. Generator’s Terminal =VT= _
Voltage (EA IARA)
IF = VF/RF

Since the internally generated voltage is independent of 1A ,the terminal

characteristic of a Separately Excited Generator is a straight line as shown in the
figure below.

}IARA drop

Ji
(a) .

Fig: The terminal Characteristics of a Separately Excited DC Generator

When the load supplied by the generator increases, the load current IL increases
and hence the armature current IA also increases. When the armature current
increases, the IARA drop increases, so the terminal voltage of the generator droops
(falls). It is called a drooping characteristic.




Shunt Generator: In this the field flux is derived by connecting the Field directly
across the Armature terminals. The equivalent circuit of such a generator is shown
in the figure below along with the governing equations.




Fig: The equivalent circuit of a DC Shunt generator along with the relevant
governing equations

As could be seen, in this machine the armature current supplies both the load
current and the field current. Using the Kirchhoff’'s voltage law the terminal voltage
is seen to be same as that of a separately excited voltage i.e. VT = (EA IARA ). In
this the advantage is that no external supply is required for the field circuit. But this
leaves an important question. If the generator supplies its own field current how
does it get the initial field flux that is required to start the machine and generate
voltage when it is first turned on? This is explained below.

Voltage build up in a Shunt Generator:

e volt%%e build L+p in a shunt 8enerator depends u'?on the presence of a residual
uxint tpo es of the %en rator. When a Shunt generator first starts to turn on an
Internal voltage is generated which is

given by EA = k. Ores. w. This voltage( which may be just one or two volts )
appears at the generator terminals. This causes a current to flow in the
generator’s field coil IF = VT / RF. This produces a m.m.f. in the poles which
in turn increases the flux in them. The increase in the flux causes an increase
in EA = k.@ 1. w which in turn increases the terminal voltage VT . When VT

rises, IF increases further, increasing the flux more which increases EA and so
on. This voltage
build up phenomenon is shown in the figure below.
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Fig: Voltage build up on starting in a DC Shunt generator

It is to be noted here that it is effect of magnetic saturation in the Pole faces
which eventually limits the build of the terminal voltage.

The voltage build up in the figure above shows up as though it is building up in
discrete steps. It is not so. These steps are shown just to make it clear the
phenomenon of positive feedback between the Generator’s internal voltage and the
field current. In the DC Shunt generator both EA and IF increase simultaneously until
the steady state conditions are reached.

The terminal characteristics of the shunt generator differ from that of the separately
excited %enerator because the amount of field current depends on its terminal
voltage. As the generator load is increased,

the load current IL increases and so IA = IF + ILT also increases . An increase in IA
increases the IARA drop causing VT = (EA -- IA TRA ) to decrease. This is precisely
the same behavior we have seen in the case of separately excited
generator.However,in the shunt generator when VT decreases the field current
decreases ,hence the field flux deceases thus decreasing the generated Voltage EA .
Decreasing the EA causes a further decrease in the terminal voltage VT = (EAl --lA
RA ). The resulting characteristic is shown in the figure below.

Field weakening
effect

Fig: Terminal Characteristic of DC Shunt Generator




It can be noticed that the drop with load is steeper than that of a separately excited
motor due to the field weakening affect. This means that the regulation of a Shunt
Generator is worse than that of a Separately Excited Generator.

DC Series Generator: In this the field flux is derived by cqnnectin? the Field coil in
series with the Armature of the Generator as shown in the figure below.

(Ngg turns)

= dg =iy,

Fig: Equivalent circuit of DC Series Generator along with the governing
equations

As shown the armature current, load current and field current are same in a DC
series generator. i.e

Ia = Ir = L. . Since the mmf produced by the fields is given by = NI and the field
current is more in the DC series generator , the fileld winding is wound with lesser
number of turns and also with a thicker gauge so as to offer less field resistance
since full load current flows through the field winding .

The terminal characteristic of a DC Series Generator looks very much like the
{)na;gnetlzatlon curve of any other type of generator and is shown in the figure
elow.

Ejand Vi, V

=l =Ig=1y)

Fig: Terminal Characteristic of DC Series Generator

At no load however since there is no field current armature voltage EA and also the
terminal voltage VT are very small ( generated by the small amount of residual
flux.) As the load increases ,field current rises hence EA also increases rapidly. The




IA (RA+RF ) drop also goes up but this rise is less predominant compared to the rise
in EA initaially and hence VT also rises initially. After some time field flux gets




saturated and hence the induced voltage EA will be constant without any further
rise. At this stage the resistive drop predominates and hence the terminal voltage
VT starts drooping.

DC Compound generator:

As we know in DC shunt Generator the terminal Voltage falls and in a DC series
generator the terminal voltage increases on loading. A compound DC Generator is
the one in which there will be both Series and shunt field coils. If they are wound
such that they aid each other then it is called a Cumulative Compound DC
Generator and if they are wound such that the two fields oppose each other, then it
is called a differential Compound DC Generator. The equivalent circuit diagram of
such Cumulative DC Generator along with relevant governing equations is shown in
the figure below.

[ I

A
e =
Ry Ry Ls
I | R
Lg
& Q0 —
IA=IL+IF
Vr=E, —I,(Ry + Ry)
Vr o
Ip= oL
[y e

Fig: Equivalent circuit of a Cumulative compound DC Generator

The circuit diagram is shown with standard dot convention on the field windings.
i.e. The current flowing into the dot side of the winding produces a
positive mmf .

And as can be seen that both IF in the shunt winding and IA in the series winding

flow into the dot side and hence both produce magnetic fields which are positive
and hence aid each other.

When the two fields are aiding each other we get a characteristic which will have
the combined effect of drooping (due to the shunt coil) and rising (due to the field
coil). Whichever coil current is more its effect will be more predominant. The
terminal characteristics of a cumulative compound DC Generator are shown in the
figure below for all the three cases.
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Fig: Terminal Characteristics of a DC Compound Generator




If the Series field effect is more dominating than that of the then we get
1. Shunt field coil the

Over compounded characteristic where the full load terminal voltage is

higher than the no load

terminal voltage.

If the Series field effect is to that of the Shunt field coil we get the
2. equal then Flat
compounded characteristic where the full load terminal voltage is equal to

the no load terminal

voltage.

If the Shunt field effect is more dominating than that of the then we get
3. Series field coil the

Under compounded where the full load terminal voltage is lower than

characteristic the no

load terminal voltage.
The normal shunt characteristic is also shown in the figure for comparison.

DC Motors:

Principle of operation: DC Motors are DC machines used as motors. A DC Motor
converts the input DC power into output rotational mechanical power from the
following principle. A current carrying conductor placed in a magnetic field
experiences a mechanical force given by F=i (I X B).

When a group of such conductors is placed on a rotor and are connected properly
the force experienced by the all the conductors together gets translated into a
torque on the rotor (armature) and it starts rotating. We will derive an expression for
such a Torque developed by a DC Motor from the first principles and its equivalent
circuit by equating the Electrical power given to the motor (excluding the losses) to
the mechanical power developed by the motor. .

Torque developed by a DC Motor: The equivalent circuit of a DC motor is shown
in the figure below.

Fl VR, ﬂll
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Fig: Equivalent circuit of a DC motor

In this figure, the armature circuit is represented by an ideal voltage source EA and
the armature resistance RA. The field coils, which produce the magnetic flux in the




motor, are represented by inductor LF and the field resistance RF. The separate
external variable resistor used to control the amount of current in the field circuit is
also combined with the field resistance and is together shown as RF.
We know from the earlier study of generators that the voltage generated in a DC
Machine when It is rotating in a magnetic flux of @ webers/pole is given by EA =
KA. 9.w where KA is given by:

KA = (ZP/2ma)




Now in the DC Motor also, when it is rotating, from the same fundamental principle
of Generator a Voltage is generated across the armature and it is now called back
EMF and is normally shown as Eb to distinguish it from the voltage generated in the

armature of a generator which was shown as EA.

The governing equation of the DC Motor armature circuit now becomes:
VT = Eb+ laRA or Eb= VT - laRA
(as against Vr = Ea - laRa in the case of a generator where la flows from armature
towards the external




terminals i.e external load ) since now an external voltage VT is applied to the motor
terminals , direction of armature current changes i.e. now it flows from external
terminals towards the armature.

The power delivered to the motor is given By : Pin = VT . la . From this, the

Lgsﬁ]gfrﬁge/g)gg}p}q%@grgr{ga’lc\lferﬁ Bsye:qual to la"RA and hence the net power given

Pm=VT.la-laRA=1la(VT-1aRA) = la . Eb
Pm = la. Eb

This net electrical power is converted into mechanical power. We know that in
mechanical rotational systems the power is equal to Torque times the speed. In
the Sl system of units which is the present Industry standard it is given by :

Pmech (watts ) = T (Nw.mtrs ).w (Radians/second )
For simplification if we ignore the mechanical losses in the motor,then :
Pm =la.Eb =P mech=7T.W0
i.e.tT.w=1la.Eb =Eb.la
Substituting the value of we got in generators here for Eb
EA=KA. O . winduced since they are the same or

emfs we getT.w = la. T= KA. O . la
KA. O.w

It is to be noted that this expression for the torque induced in a
motor is similar to the voltage induced in a DC Generator except
that the speed w in the DC Generator is replaced by the Armature
current la . The constant KA is same and is given by KA =
(ZP/2ma)

In general, the torque T in the DC motor will depend on the
following 3 factors:
1. The flux @ in the machine
2. The armature current Ila in the machine
3. The same constant KA representing the construction
of the machine

Types of DC Motors and their output (or terminal)
Characteristics:

There are three important types DC Motors: DC separately
excited, Shunt and Series motors. We will explain their
important features and characteristics briefly.

The terminal characteristic of a machine is a plot of the machine’s
output quantities versus each other.

For a motor, the output quantities are shaft torque and speed, so
the terminal characteristic of a motor is a plot of its output
torque versus speed. (Torque/Speed characteristics)

They can be obtained from the Motor’s Induced voltage and torque
equations we have derived earlier plus the Kirchhoff's voltage law
around the armature circuit and are again given below for quick

reference.

The internal voltage generated in a DC motor Eb = Ka.

is given by: P.w

The internal Torque generated in a DC motor T = Ka.

is given by: ®.la

KVL around the armature circuit is VT = Eb+

given by : la.Ra
Where o Flux per pole ... Webers

la = Armature current .... Ampere




VTs

Ra

Ka

Applied terminal Voltage

Armature resistance

Motor speed

Armature Back EMF
(ZP/2ma) : Motor Back EMF/Torque
constant
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ec
Volts




From the above three equations we get the relation between Torque and speed as:
o= (VT /Ka. ®) -- (Ra/ Ka. ®). la

o = (VT / Ka. ® ) -- [Ra/ (Ka. ®)°1.T
We will use this eqtuation in different types of motors and obtain their Torque vs.
Speed characteristics.

DC separately excited and Shunt Motors:

The Equivalent circuits of DC separately excited and Shunt Motors along with their
governing equations are shown in the figure below.

Ry Iy I

M o+
R, Ia Iy -’rl
S Lumped Ry
VYV together and ]
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Sometimes called Ry
lumped E
together and i
called Ry
E, Vr By

+ s
.
Ip= Ef — - "R
V= By + iR, Vy=Ey + LRy
=1, Ip=l+1
(a) Separately Excited (b) Shunt

Fig: Equivalent circuit of DC separately excited and Shunt Motors

In a separately excited DC motor the field and armature are connected to separate
voltage sources and can be controlled independently. In a shunt motor the field and
the armature are connected to the same source and cannot be controlled
independently. When the supply voltage to a motor is assumed constant and is
same to the field and armature circuits, there is no practical difference in behavior
between these two machines. Unless otherwise specified, whenever the behavior of
a shunt motor is described, it would be same as that of a separately excited motor.

In both their cases, with a constant field current the field flux can be assumed to be
constant and then (Ka. ®) would be another constant K. Then the above Torque
speed relations would become:

o= VT/K--(Ra/K). la

VT /K - [Ra/ (K)21.T
This equation is just a straight line with negative slope. The resulting Speed/ Torque
Characteristics of a DC Separately Excited /Shunt Motor for a rated terminal voltage
and full field current are shown in the figure below. It is a drooping straight line.
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Fig: Speed/ Torque Characteristics of a DC
Separately Excited/Shunt Motor




The no load speed is given by the Applied armature terminal voltage and the field
current. Speed falls with increasing load torque. The speed regulation depends on
the Armature circuit resistance. The usual drop from no load to full load in the case
of a medium sized motor will be around 5%. Separately excited motors are mostly
used in applications where good speed regulation and adjustable speed are
required.

DC Series Motor:

The equivalent circuit of a DC Series motor is shown in the figure below.

R Ry Ls Is I

—0 -
Iy=1g =1

Vp=Ey +1, (Ry + Ry

Fig: Equivalent Circuit of a DC Series Motor

In a series motor the field current and armature current are same and hence the
field flux is directly dependent on the armature current. Hence during the initial i.e
unsaturated region of the magnetization characteristic the flux ® can be assumed
to be proportional to the armature current.

Then ® = Kf.la

And using this value in the first basic motor relation given earlier we get:

T = Ka. #.la = Ka. Kf.la2

T= Kaf.la2 ( where Kaf = Ka.Kf )
Substituting the above two values of ® and T in the second basic motor equation
w = (VT /Ka. ®) -- [Ra/
(Ka. ®)%1.7

We get w = VT / Ka. Kf.la -- [Ra/ (Ka. Kf .|a)2].Kaf.|a2

w = VT / Kaf.la -- [Ra/ (Kaf .Ia)z].Kaf.la2

w = VT / Kaf.la -- [Ra/ (Kaf)]

2 -
From the relation T = Ka. Ka. Kf.la~ we get la = vT/Kaf and substituting
®.la = this in the above

equation w = VT / Kaf.la -- [Ra/ (Kaf)]

We get w = *VT /V( Kaf.T)] -- [Ra/(Kaf)]




Where Ra is now the sum of armature and field winding resistances and Kaf =
Ka.Kf is the total motor constant. The Speed-Torque characteristics of a DC
series motor are shown in the figure below.
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Fig: Speed-Torque characteristics of a DC series motor

Series motors are suitable for applications requiring high starting torque and heavy
overloads. Since Torque is proportional to square of the armature current, for a
given increase in load torque the increase in armature current is less in case of
series motor as compared to a separately excited motor where torque is
proportional to only armature current. Thus during heavy overloads power overload
on the source power and thermal overload on the motor are kept limited to
reasonable small values. According to the above Speed torque equation, as speed
varies inversely to the square root of the Load

torque, the motor runs at a large speed at light load. Generally the electrical
machine’s mechanical

strength permits their operation up to about twice their rated speed. Hence the
series motors should not be used in such drives where there is a possibility for the
torque to drop down to such an extent that the speed exceeds twice the rated
speed.

Speed control of DC Shunt Motor:
There are two basic methods of DC Shunt Motor speed control

+ Armature Voltage Control ( AVC ) and
¢ Flux control

Armature Voltage Control (AVC):

This method involves changing the voltage applied to the armature of the motor
without Chalr\]/ng the Voltage applied to the field. This is ﬁOSSIb|e with a Separately
excited DC Motor only and not with DC Shunt Motor. So first we shall explain for a
DC separately excited motor and extend the same logic to a

shunt Motor. If the armature terminal Voltage VT is increased, then the IA will rise
since[IA= (VT T -

Eb)/RA]. As IA increases, the induced torque T = Ka. ®.laT increases, making
Tind > Tload , and the speed of the motor increases.

But, as the speed increases, Eb = Ka. ®.wT increases, causing the armature
current IA to decrease since [ 1A = (VT -EbT)/RA]. This decrease in IA decreases
the induced torque, causing Tind to become equal to




Tload at a final higher steady state rotational speed. Thus we can sie,e that an
increase in Armature voltage results In a hlé;h,er speed and the resulting Speed
Torque characteristics with C is shown in the figure below.
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Fig: The effect of armature voltage speed control

In the case of a DC Shunt motor since changing the voltage applied to the
armature of the motor without changing the Voltage applied to the field is not
possible a Variable resistance is introduced in series with the Armature which results
in a reduction in the Armature current IA. Effectively reduction of Armature current is
equivalent to reduction in Armature voltage as seen in the above logic. Hence we
get the same type of Speed control as shown in the figure above except that the
characteristic with VA2 represents the nominal rated speed and that with VA1
represents with additional resistance introduced in series with the Armature. With
this method speed control is possible but speed can only be reduced from the rated
or nominal speed. Even for a separately excited DC Motor it can provide speed
control

below Base speed only because armature voltage cannot exceed the rated
value.

Flux control:

Another method of Shunt motor speed control is to change the flux in the field. In a
shunt motor Field current and hence field flux cannot be changed without changing
the armature volage.Hence flux control in Shunt motor is achieved by changing the
Field resistance. If the field resistance increases, then

the field current decreases (IF! = VT/RF1T), and as the field current decreases, the
flux also decreases . A decrease in flux causes an instantaneous decrease in the
internal generated voltage (back emf) Eb!l = Ka. ®l.w which causes a large
increase in the machine’s armature current since,

IAT =(VT--EB!)/RA

The induced torque in a motor is given by Tind = Ka. ®l.laT . Here since the flux

in this machine decreases while the current IA increases, which way does the
induced torque change?

From practical data it can be seen that for a given decrease in flux the increase in
armature current is much higher and hence the increase in current predominates
over the decrease in flux caused by the Increase in field resistance.

so, Tind > Tload , the motor speeds up.

However, as the motor speeds up, Eb rises, causing IA to fall. Thus, induced torque Tind too
drops, and finally Tind equals Tload at a hi.%her steady-state speed than the original speed .
The Speed Torque characteristics with change in Field Resistance are shown in the

1 Wy,
figure below. Bigos R

Tind




Fig: Shunt Motor Speed control with Flux control (Change in field
resistance)




Field Flux Control can be employed For speeds above Base speed only as to
achieve speeds below base speeds field current has to be increased beyond
its rated value which is not permitted. In a normally designed motor the
maximum speed can be twice the rated speed and in specially designed
motors it can be up to six times the rated speed.

PF = IF° RF

Losses and efficiency (n) of DC Machines:

DC Generators convert Mechanical power into Electrical power and DC Motors
convert Electric power Into mechanical power. In either case not all the input

ower is converted into output power.In the process of conversion some power is
ost. The following are the important components of losses.

1. Electrical or Copper Losses (I2R Loss):Current flow through the resistance of
Armature and Field cols

. . 2 . .
give rise IR losses and since the coils are normally made up of copper these losses are
called Copper losses.

Armature copper loss: PA = IA2 RA
Field copper loss:

2. Core Losses: They are the hysteresis and eddy current losses occurring in the
Armature and Field ‘cores

3.Mechanical Losses: They are associated with the mechanical effects and they are
mainly Friction and windage losses. Friction losses are losses caused by the friction
in the bearings of the machine and windage losses are due to the friction between
the moving parts of the machine and the air flow in the machine housing .

4. Stray Losses: They are other miscellaneous losses that cannot be grouped
into any of the above categories.

Efficiency:
The efficiency of a DC Machine is defined as n = (Pout/Pin). 100 %

Efficiency calculations of Generator:

s« If ILis the load current supplied by the Generator at a terminal voltage of V1 then the output
power is given by

The armature

current IA =IL+IF
Armature copper 2
loss PA = 1A RA

Field copper loss Pr = IF2 RF




=IA2 RA + IF2 RF +Wc where Wc is the sum of the core

Total losses losses and stray
losses.
= + Total
Therefore Input P losses =P +1a2Ra + IF2 RF +Wc

n = (Pout/Pin). 100 % = (VT.IL )/( VT.IL + IA2 RA + IF2 RF

+Wc).100%

Efficiency calculations of Motor:

Hence

If IL is the line current taken by the Motor at a terminal voltage of VT then the input
power is given by
The losses are same as in the Generator

Therefore Pout = Pin-- Total losses = Pin-( la2 Ra +
output I 2 RF +Wc )
n= (Pout/Pin). 100 % = [{Pin-( la2 Ra + I 2 RF +WCc
)} (Vi) 1. 100%




Of these losse $ RF +WCc ) are calle Fonstant losses PcC _?_Ih ce they are almost
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Maximum efficiency:

The condition for maximum efficiency is developed by differentiating the
expression for efficiency as a function of load current and equating it to zero since
the variable losses are dependent on the load current. The condition is obtained
as:

Constant losses Pc = Variable losses ( |L2RA )oriL = \/( Pc/ RA)

Swinburne’s test:

This is a test to determine the efficiency of any DC Machine (Motor or Generator)
without conducting the actual test at the required load. The test is conducted just at
no load and the constant losses are found out when the machine is running as a
motor. Then the efficiency is found out by calculating the variable losses at the
required load. This method is formulated by Sir James Swinburne and hence it is
called Swinburne’s test.

The machine is run as a motor on no load at normal terminal voltage VT, at
normal speed and the line current INL &field current IF are measured.

* Then the no load armature current 1A
o Variable losses on no load

be measured these losses can be calculated)
Input to the motor = VT. INL = Total losses (Since the machine is on no

:oad th)ere is no output. i.e. the entire input power on no load goes as
osses.

+« Therefore constant losses Pc = (Total losses - Variable losses) = (VT.
2
INL)-( IA™ .RA)

Using these constant losses Pc , the efficiency of the machine can be
estimated at any other load when working either as a Motor or as a
Generator.

Working as a Generator delivering a load current of IL amperes at a terminal
voltage of VT volts:

Power output = VT. IL

. Arwatf/ (IF is same as obtained in the No load
. OV RiSle  test)
. loss = IA” RA (RA is obtained from the no load test or from

Machine data)
Efficiency = (output/Input) —ioutput/(output+TotaI

losses)] = (VT. IL)/C} VT. IL+ IA"RA+PC)
(Pc is calculated and obtained from the No load test)




Working as a Motor drawing a load current of IL amperes from a
supply terminal voltage of VT volts:

Power in put = VT. IL
Armature current IA =
IL- IF

Variable loss = IA2 RA

(IF is same as obtained in the No load test )
(RA is obtained from the no load test or from
Machine data)




Efficiency = (output/Input) = [(Input-Total losses)/ input] =[VT. IL-

(1A2RA+PC)1/(VT. 1)
(Pc is calculated and obtained from the No load test)

Advantages of Swinburne’s test:

* This is a very simple to determine the efficiency of the machine at any load
just by conducting the no load test.

« The power required is very less compared to the direct full load test.

Disadvantages of Swinburne’s test:

+ This test can be done on Shunt machines only.

The speed and flux are assumed constant. But the speed will fall with
loading. Fall in speed results in lesser friction and windage losses.
Change in flux will change the core losses.

The temperature of the machine changes while running on load. Hence the
assumption that RA is same as that of the No load test is not correct.

These reasons contribute to the difference in the efficiency obtained from
the Swinburne’s test and actual load test.

Important concepts and Formulae

* Voltage generated in a DC machine: EA = (@ ZN/60). (P/a) and in terms
of angular speed w :

EA = Ka O w where Ka = ZP/2ma
+ Torque generated in a DC machine : T = Ka. ®.la

Speed control with armature voltage control is possible only
below the rated or nominal speed (also known as base speed).

+ Speed control with flux control is possible only above the base speed
» The efficiency of a DC Machine is defined as n = (Pout/Pin). 100 %

Efficiency of Generator:

n= (Pout/Pin). 100 % = (VT.IL )}/( VT.IL + 1A% RA + IFZ RF +Wc).100%

Efficiency of Motor:

1 5 o{Bgut/Pin). 100 % = [{VT.IL -( 1A% Ra + IF2 RF +Wc )}/ (VT.IL) 1.
* The condition for maximum efficiency :

Constant losses Pc = Variable losses ( |L2RA ) or IL = V( Pc/ Ra)

llustrative Examples

Ex.1: Calculate the e.m.f. generated by a 6 Bole DC Generator having 480
conductors and driven at a speed of 1200 RPM. The flux per pole is 0.012
Webeas. (a) When the machine is lap wound (b) When the machine is wave
woun

Solution: We know that the e.m.f. generated by a DC Generator is given by

E=(9 where
A ZN/60)
( P/a)
@ Flux per pole




= 0.012Wb
(webers)

Z Total number of conductors = 480
on the armature




a T
and

he number of parallel paths = No of Poles P ( = 6 ) when Lap wound
= 2 when wave wound

N Speed of rotation of the = 1200 RPM
machine (RPM)

P The number of poles = 6
(a) For Lap wound machinea=P =6

E =[(0.012 x 480 x = 115.2Volts
a 1200)/60 ][ 6/6]

(b) For wave wound machine a = 2

Ea = [(0.012 x 480 x = 345.6Volts
1200) /60 ][ 6/2]

Ex.2 : A 50 Kw ,250 V shunt generator operates at 1500 RPM
.The armature has 6 poles and is lap wound with 200 turns.
Find the induced e.m.f and the flux per pole at full load given
that the armature and the field resistances are 0.01 Q and
125 Q respectively.

Solution:

Output line current = Output power / Line =50 x 1000/250 =
voltage 200 A

Field current = Line Voltage / Field = 250/
resistance 125=2 A
Armature current in a shunt generator: =1 = 200 + 2

+ Ir =202 A
Induced e.m.f Ea : = Line Voltage + Armature drop (13R3
drop)

= 250 + 202 x 0.01 = 252.02 V

But we know that armature voltage in terms of the basic
machine parameters is also given by




E=(0 where
A ZN/60)
( P/a)

@ c: Flux (webers) = To be determined
per pole

Z : Total number of conductors on the armature has =
Number of turns x 2 ( since each turn two conductors ) =
200 x 2 = 400




a : The number of parallel paths = No of Poles P ( = 6 ) (since Lap wound )
N : Speed of rotation of the machine (RPM) = 1500 RPM

P : The number of poles = 6

9 = (EA x 60 x a/ ZNP) = 252.02 x 60 x 6 /400 x 1500 x 6 = 0.025202
Wb

Ex.3: A shunt generator connected in parallel to supply mains is delivering a
power of 50 Kw at 250 V while running at 750 RPM. Suddenly its prime
mover fails and the machine continues to run as a motor taking the same 50
Kw power from 250 V mains supply. Calculate the speed of

the machine when running as a motor given that Ra = 0.01 Q, Rf = 100 Q
and brush drop is 1 V per brush.

Solution:

First let us calculate the Voltage generated by the machine while
running as a generator under the given conditions:

Output line current = Output power / Line voltage = 50 x 1000 /250 = 200
A

Field current = Line Voltage / Field resistance = 250/100=25A
Armature current : Il + If =200+ 25=2025A

Induced e.m.f Ea := Line Voltage + Armature drop (laRa drop)+ Brush drop(two
brushes )

=250 + 202.5 x 0.01 + 2 x1 = 254.025 V

Next let us calculate the Voltage generated by the machine while
running as a motor under the given conditions :

Input line current = Input power / Line voltage = 50 x 1000 / 250 = 200 A

Field current = Line Voltage / Field resistance = 250
/ 100 = 2.5 A Armature current : li - Ir = 200 - 2.5 =
1975 A

Induced e.m.f or back e.m.f Eb : = Line Voltage - Armature drop(laRa
drop) - Brush drop(two brushes )

=250-197.5x0.01 -2 x1 =246.025V

We know that the voltage induced in the machine is proportional to the
speed i. e

Generator armature voltage is proportional to Generator speed : E. NG
and similarly




Motor back e.m.f is proportional to Motor speed : Eb Nu

Hence EaNc = Eb Nm or Nm = (EbEa )N = (246.025 / 254.025) x 750 =
726 RPM




Ex.4: A 500 V shunt motor with Rf = 250 Q and Ra = 0.2 Q runs at 2500 RPM
taking a current of 25 A from the mains supply . Calculate the resistance to
be added to the armature circuit to reduce the speed to 1500 RPM keeping
the armature current constant.

Solution:

First let us calculate the back e.m.f developed by the motor in the
given first set of conditions:

Field current If = Rated terminal voltage / Rf =
500 /250 = 2 A

Armature current

Back eem.fEr = =500-23x0.2 =
VT -la Ra 495.4V
We know that the back e.m.f is proportional to
the speed
Eb1 / Eb2 = N1/ 4954 [ Er2 =
N2 i.,e 2500/1500 Eb2 = 495.4 x 1500/ 2500
= 297.24 V
But we also know that = V71 -la Ra2 the terminal voltage and the
Eb2 ( Since armature
current remain the
same )

from which we get Ra2 = ( 500 - 297.24 ) /23

X Ra2




Hence the new resistance to be added into the armature circuit =
8.82-0.2 =8.62 Q

Ex.5: A DC shunt motor takes 22 A from 250 V supply. Ra = 0.5 Q, Rf = 125
Q. Calculate the resistance required to be connected in series with the
armature to halve the speed (a ) when the load torque is constant ( b) When
the load torque is proportional to the square of the speed olution :

First let us calculate the speed of the motor when the load current Il is 22 A :
Field current If = Rated Terminal voltage / Field resistance = 250/125 =2 A
Armature currentla =1l-1f =22 -2 =20 A

Backeem.fEb = VT-laRa=250-20x0.5=240V

(a) we have to find out the New Ra when the speed is halved with torque
maintained constant :

We know that Torque T = Ka. @.la . In this case since change is only in the
armature resistance

field current and hence flux @ remains the same. Further since the torque is
mazlgtgmed constant the armature currents are also equal and hence la1 = la2

We also know that Eb = Ka. @.w . As already explained, Ka. @ remains same
and hence when the speed is halved the back e.m.f also gets halved.

Hence Eb2 = 120 V = VT - laRa2 i.e 250 - 20 x Ra2 = 120 V i.e Ra2 = (250
-120)/20 = 6.5Q Hence the Resistance to be added to halve the

speed = Ra2 - Ra = 6.5-0.5 =6.0 Q

(b)Next we have to find out the New Ra when the speed is halved when
torque is proportional to square of speed.

When the torque is proportional to the square of the speed t1 = K w1l 2 and
2 =Kw2>
S/ =Kwll/Kw2 = wi?/w?=(105)° =4

But Torque is also proportional to the product of flux (and hence field

current Jand Armature current. Here field circuit is not disturbed and hence
the field current is same. Using this

relation we can find out new armature current la 2
Tl1/ 2 =KxIfxlal/KxIfxla2z=1lal/la2=4 il.ela2=1a1/4=20/4
=5A

Next using the relation between the speeds and the back emfs we can find
out the armature resistance to be added.




w1/

W2 = 2 and also

w1/ = Ebi/Ev2 = 240/ (250 -5 x Raz2) i.e 250- 5Ra2 = 240/2 =120

W2 From which we get

Raz (250-120)/5 = 26 Finally Resistance to b added is = 26-0.5 =

= Q 25.5 Q




Ex.6: A 250V DC series motor takes 40 A and runs at 1000 RPM. Find the
speed at which it runs if its torque Is halved. Assume that the motor is
operating in the unsaturated region of its

magnetization. Rf = 0.25 Q Ra = 0.25 Q

First we will use the relation between torque and armature current and get
the back e.mf when the torque is halved :

In a DC motor we know that the torque is proportional to @.la. In the case of
a series DC motor flux is proportional to the armature current itself since If =

la . Hence in a series motor T « la

2
Henc T1/Tt2 = lal / a2 2 = 2 (Since torgue is halved) v
e lal/ la2 = 2
lax =40 A and la2 = ¢0/2 =28.28 A
= 250-40 (0.25 + 0.25) = and Eb2 = 250 - 28.28 (0.25 + 0.25) =
Eox 230V 235.86 V

Next we will use the relation between back emf and speed and get the speed when
the torque is halved:

We know that Ebl = Ka @1N1 and Ew: = Ka @2N2 . But since the flux is proportional
to la the relations become Ebl = K 1a1N1 and Eb2 = K [a2N2 where K is a new
constant. Hence Eb1/ Eb2 = K 1a1N1 / K la2N2 = laiN1 / l.2N2 and N2 = ( a1 / 1a2) ( Eb2/
Eb1) N1

Substituting the above N /2 1450 RPM
values we get 2 (235.86/230)
1000 =

Ex.7: A 500 V DC shunt motor runs at 1900 RPM taking an
armature current of 150 A. The armature resistance is 0.16
Q. Find the speed of the motor when a resistance is inserted
in the field circuit which reduces the field current to 80 %
and the armature current is 75 A.

Solution:

We know that the back e.m.f of a DC motor is proportional to
the Flux and speed. And in the unsaturated region of the
magnetization regE;on the flux in turn is proportional to the
field current. So Back e.m.f is proportional to field current
and speed. We will find out the new

speed by calculating the back e.m.fs [from the relation (Eb =
T - la Ra )]and using the above proportionality relation in
both the conditions as below.

E, = VT-lal - 150 x =476 and equalto Ka.@1.
1 Ra= 5000.16 Vv is N1
E, = VT-la2 -75x =488 and equaltoKa.

2 Ra= 5000.16 Vv is 0.801. N2




476 /488 = Ka.1. N1/ Ka . 0.801. N2

And N2 = (488 /476)( N1/0.8 ) = (488 /476)( 1900/0.8) =
2435 RPM

Ex.8: A DC shunt motor having a full load efficiency (n )of
85 % takes a line current of 27A from

250 Volts mains on full load. If Ra = 0.5Q and Rf = 125 Q,
find the constant losses, load current for maximum efficiency
and the maximum efficiency.

Solution:

Input power at full load = Full load current x Rated voltage =
250 x 27 = 6750 W




Output power = Input power x n = 6750 x0.85(n=85% ) =5737.5W

Hence Total losses = Input power Output power = 6750 5737.5
= 1012.5 W We know that Total losses = Variable losses

( Ia2Ra ) + constant losses.
If = Rated Terminal Voltage/ Field

resistance = 250/125=2A
For the Shunt motor armature If =

current la = I - 27 —2=25A
Variable losses = Ia2Ra = 252 x 0.5 =

312.5

Constant losses = Total — Variable losses = _ 312.5 =
losses 1012.5 700 W

We know that the condition for maximum efficiency is: Variable losses =
Constant losses

at maximum efficiency =
ie. |2R 700 Y la@max. ¥ 700/0.5+ 1400 =
a a 5Hon = 37.42 A
The load current at maximum n : ll@max. n = + If =37.42 + 2 =
: la@max. n 39.42
Input power at maximum n = Il @max. n X Rated terminal voltage = 39.42 x
250 = 9855 W

(Since variable losses = constant losses = 700)

Maximum efficiency = Out power at maximum efficiency/ Input power at
maximum efficiency

= 8455 /9855 = 0.858 or 85.8 %

Ex.9: A 100 Kw 500 V DC shunt machine when run as a motor on no load at
rated speed and voltage takes a line current of 10 A and a shunt field
current of 2.5 A . Resistance of the armature is 0.15 Q. Estimate the
efficiency of the DC machine when running as a generator (a) at full load (b)
at half full load.

First the constant losses of the Machine are obtained from the data we have
when the machine is run as a motor on no load at rated speed and voltage:

Input power on no load = Rated voltage x Input current on no load = 500 x
10 = 5000 W

Field current If = 2.5 A
No load Armature current la = lino = (10 - 2.5
load — If ) =75A

Variable loss at no load = (la on no 2
=7.5 X=8.4375

load )2 X Ra 0.15w




Constant Losses = ( Input power- Variable losses)(on no load) = 5000 -
8.4375 = 4991.56

W

Next we will calculate the efficiency in different conditions:

(a) Running as a generator at full load:

Full load output (line) current = 100 x 1000 / 500 = 200 A

Full load armature current = Full load line current + Field current = 200 + 2.5
= 202.5

A Variable (Armature copper) losses on full load = Ia2 Ra = 202.52 x 0.15 =

6150.94 W




Total losses @ full load = Constant Losses + Variable losses on full load =
4991.56 + 6150.94 = 111425 W

Efficiency at full load (Working as Generator) = Output / Input = Output
/ Output + Total losses
@ full load = 100000/ 100000 + 11142.5 = 0.8997 or 89.97 %

(a) Running as a generator at half full load:

Half Full load output (line) current = 50 x 1000 / 500 = 100 A

Half Full load armature current = Half Full load line current + Field current =

) 2
100 + 2.5 = 102.5 A Variable (Armature copper) losses on half full load = la
Ra = 102.52 x 0.15 = 1575.94 W

Total losses @ half load = Constant Losses + Variable losses on half load =
4991.56 + 1575.94

= 6567.5W

Efficiency at half full load (Working as Generator) = Qutput / In;7) t
Output / Qutput + Total losses @ full'load = 50000 0000 + 6567.5
0.8839 or 88.39 %

Ex.10: A 500 V DC shunt machine takes 5A when running light (on no load)
at rated speed and rated voltage as a motor. Calculate the out output power
and efficiency when the machine is run as a Motor and taking an Input
current of 80 ‘A. Calculate the line current at which the

efficiency is maximum and the value of maximum efficiency. Ra = 0.2 Q and
Rf = 250 Q

First the constant losses of the Machine are obtained from the data
we have when the machine is run as a motor on no load at rated
speed and voltage:

Input power on no load = Rated voltage x Input current on no load
= 500 x 5 = 2500 W Field current If = Rated voltage / Rf = 500 /
250=2A

No load Armature current Iz = lj no load - I =(5-2)=3A

Variable loss at no load = (la on no — 32 x 0.2 =

load )2 X Ra 1.8 W

Constant Losses = ( Input power- Variable losses)(on no load) = 2500 - 1.8
= 2498.2 W

Next we will calculate the output power and efficiency when the
AMachlne is running as a motor and taking an input current of 80

Armature current = Line current (Input Current) - Field current =80-2 =78
A




. . 2
Variable (Armature Copper) losses (with armature current of 78A) = la Ra

=782 X 0.2 = 1216.8 W Total losses = Constant Losses + Variable losses at

80 A line current = 2498.2 + 1216.8 = 3715 W Input Power = 500 x 80 =
40000 W

Out Put Power at 80 A line current (SWorking as Motor) = Input Power -
Total losses at 80 A line current = 40000 -3715 = 36285 W

Efficiency at 80 A line current (Working as Motor) =
Output Power /Input Power

= 36285/40000 = 0.9071 or 90.71 %




Finally we will calculate the line current at which the efficiency is
maximum and the value of maximum efficiency:

We know that the condition for maximum efficiency is: Variable losses =
Constant losses

, 2 ,
8 e s BRI -

~The line current at maximum n : ll@max. n = la@max. n + If = 111.76
+ 2 = 113.76 A Input power at maximum n = Il @max. n X Rated terminal

voltage = 113.76 x 500 = 56880 W

Qégfggvgrfa%agg?ingqs%y% Wwer at maximum n Fotal losses = 56880

(Since variable losses = constant losses = 2498.2)

Maximum efficiency = Out power at maximum efficiency/ Input
power at maximum efficiency = 51883.6 /56880
= 0.9122 0r 9122 %

Previous year’s Question papers:
May 2011:

5)What are the different types of dc generators? Show the connection diagrams and
load characteristics of each type. [15]

6.a) Explain why a dc series motor should never run unloaded.

b) A 200V, 14.92kW, dc shunt motor when tested by Swinburne’s method
gave the following test results.

Running light: Armature current of 6.5 A and field current = 2.2A
\éVithharmature locked: | =70A when potential difference of 3V was applied to the
rusher.

Estimate ef‘ﬁciencyaof motor when working under full load. [5+10]
State the principle of operation of a dc generator and derive the expression for the
emf generated. [15]

b)A 4 pole, 500V dc shunt motor has 700 wave connected armature conductors.
The full load armature current is 60 A and the flux per pole is 30mWb.
Calculate the full load speed if the motor armature resistance is 0.2Q and
brush drop is 1V per brush.

[7+8]

Explain in detail the construction and principle of operations of DC generators. [15]
6.Discuss in detail the different methods of speed control of a dc motor. [15]

c) A 6 - pole dc shunt generator with a wave - wound armature has 960 conductors. It
runs at a speed of 500 rpm. A load of 20Q is connected to the generator at
a terminal voltage of 240V. The

armature and field resistances are 0.3Q and 240Q respectively. Find the
armature current, the induced emf and flux per pole. [15]

6.Sketch the speed - load characteristics of a dc shunt, series and compound
motors. Account for the shape of the above characteristic curves. [15]
May 2012:

5.(a) Name the main parts of a DC machine and state the materials of which each
part is made of and explain clearly the reasons to select these materials.




(b) A Certain wave wound DC generator running at a speed of 300rpm is to
generate an induced emf of about 535V, the ux per gole being 0.055 Wb. Determine
the number of poles, if the number of conductors is 650

7. (a) Explain why Swinburnes test cannot be used to determine the efficiency of DC
series motor?

(b)A 4 pole series motor has 944 wave-connected armature conductors at a certain
load. The flux per pole is 34.6 mWb and the total mechanical torque developed is
209 N-m. Calculate the line current




taken by the motor and the sgeed at which it will run. The applied voltage is 500 V
and total motor resistance is 3.0hms
(b) Draw the circuit model of a DC shunt generator and write the relationship of

currents and voltages.

(a) \All general requirements of the electric traction are fulfilled by DC series
rr#]otorsthrr%pared to other DC motors". Justify with related equations and
characteristics.

(b) A 250V, 4-pole wave wound DC series motor has 888 conductors on its
armature, It has armature and field resistance of 0.88ohms .The motor takes a
current of 80A. Determine

i)Speed
ii) Gross torque developed if it has a ux per pole of
28 mwb. [7+8]

2. Compare DC generator and DC motor from principle of operation point of
view and mention the application of each machine?

(a) . A series wound motor runs normaIIP</. The field coils are all connected in
series. Estimate the speed and current taken by the motor, if the coils are
reconnected in two parallel groups of two in series. The load torque increases as the
square of the speed. Assume that flux is directly proportional to the current and
ignore the losses.

(b)A 220V motor has an armature circuit resistance of 0.6. If the full load
armature current is 20A and the no load armature current is 5A, find the change
in back e.m.f from no-load to full-load.

(a) With a neat sketch, explain how the direction of rotation of DC motor can be
reversed?

(b) Derive the standard torque equation of DC motor from first principles.

Model papers:

g) Define DC generator and DC motor? (2Marks)

h) A 6 - pole dc shunt generator with a wave - wound armature has 800
conductors. It runs at a speed of 600 rpm. A load of 10Q is connected to the
generator at a terminal voltage of 220V. The armature and field resistances are
0.4Q and 200Q respectively. Find the armature current and the induced EMF.
(3Marks)

8. a) Explain the principle of operation and operation of DC generators.

b)A 4 - pole dc shunt generator with a wave - wound armature has 960
conductors. It runs at a speed of 500 rpm. A load of 20Q is connected to the
generator at a terminal voltage of 240V. The armature and field resistances are
0.3Q and 240Q respectively. Find the armature current, the induced emf and flux
per pole.

(OR)
9. a) Derive the torque equation of a dc motor.

b)A 4 Pole, 500V dc shunt motor has 700 wave connected armature conductors.

The full load armature current is 60 A and the flux per pole is 30mWhb. Calculate the

Lull Iﬁad speed if the motor armature resistance is 0.2Q and brush drop is 1V per
rush.

h)A 250V, 4-pole wave wound DC series motor has 888 conductors on its armature.
It has armature and field resistance of 0.88ohms .The motor takes a current of 80A.
Determine.

i)Speed.

i) Gross torque developed if it has a flux per pole of 28 mw. (3Marks)

8. a) What are the different types of dc generators? Show the connection
diagrams and load characteristics of each type.

b)A short shunt compound generator delivers a load current of 30A at 220V and has
a armature, series and shunt field resistances are 0.05 ohms, 0.03 ohms and 200
ohms respectively Calculate the induced EMF and armature current. Allow 1V per
brush contact drop.

(OR)




9. a) Explain why Swinburne’s test cannot be used to determine the efficiency of DC
series motor?

b)A 4 pole series motor has 944 wave-connected armature conductors at a certain
load. The flux per pole is 34.6 mWb and the total mechanical torque developed is
209 N-m. Calculate the line current taken by the motor and the speed at which it
will run. The applied voltage is 500 V and total motor resistance is 3 ohms.




h)A Certain wave wound DC generator running at a spee
an induced emf of about 535 the ux per polé being 0.0
number of poles, if the number of

conductors is 650. (3Marks)

d of 300rpm is to generate
55 Wb. Determinethe




